• Title/Summary/Keyword: wheel & axle

Search Result 145, Processing Time 0.026 seconds

Evaluation of Mechanical Characteristic and Residual Stress for Railway Wheel (철도차량 차륜의 기계적 특성 및 잔류응력평가)

  • Seo, Jung Won;Kwon, Suk Jin;Lee, Dong Hyeong;Jun, Hong Kyu;Park, Chan Kyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.783-790
    • /
    • 2014
  • Railway wheels and axles are the most critical parts of the railway rolling stock. The wheel carry axle loads and guide the vehicles on the track. Therefore, the contact surface of wheel are subjected to wear and fatigue process. The wheel damage can be divided into three types; wear, contact fatigue failure and thermal crack due to braking. Therefore, in the contact surface between the wheel and the rail, the materials are heat treated to have a specific hardness. The manufacturing quality of the wheel have a considerable influence on the formation of tread wear and damage. Also, the residual stress on wheel is formed during the manufacturing process is one of the main sources of the damage. In this paper, the mechanical characteristic and the residual stress according to wheel material have been evaluated by applying finite element analysis and conducting mechanical tests.

Study on the Dynamic Behavior Characteristics due to the Unbalance High Speed Railway Vehicle Wheel (고속철도차량용 차륜 불평형에 의한 동적 거동 특성 연구)

  • Lee, Seung-Yil;Song, Moon-Shuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.175-181
    • /
    • 2016
  • This occurs when the unbalanced rotating body is inconsistent with the mass center line axis geometric center line. Wheelsets are assembled by a single axle with two wheels and a rotating body of a running railway vehicle. Owing to non-uniformity of the wheel material, the wear, and error of the wheel and axle assembly may cause an imbalance. Wheelsets will suffer the effects of vibrations due to the unbalanced mass, which becomes more pronounced due to the thin and high-speed rotation compared to the shaft diameter This can affect the driving safety and the running behavior of a rail car during high-speed running. Therefore, this study examined this unbalanced wheel using a railway vehicle multibody dynamics analysis tool to assess the impact of the dynamic VI-Rail movement of high-speed railway vehicles. Increasing the extent of wheel imbalance on the analysis confirmed that the critical speed of a railway vehicle bogie is reduced and the high-speed traveling dropped below the vehicle dynamic behaviour. Therefore, the adverse effects of the amount of a wheel imbalance on travel highlight the need for management of wheel imbalances. In addition, the static and dynamic management needs of a wheel imbalance need to be presented to the national rail vehicles operating agency.

Impact Dynamic Analysis for the Wheel-Type Landing Gear System of Helicopter (헬리콥터 휠타입 착륙장치 충돌특성 연구)

  • Park, Hyo-Geun;Kim, Dong-Man;Kim, Dong-Hyun;Cho, Yun-Mo;Chung, Jae-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.12-22
    • /
    • 2008
  • In this study, the dynamic characteristics for the wheel-type landing gear system of helicopter have been analyzed. Nonlinear multi-body dynamic models of the landing gear system are constructed and the equations of motion, kinematics and internal forces of shock strut are considered. In addition, flexibility effect of the wheel axle with equivalent beam element is taken into account. General purpose commercial finite code, SAMCEF which includes MECANO module is applied. The results of dynamic simulation for various landing and weight conditions are presented and compared with each other. Based on the results, characteristics of impact dynamic behaviors of the landing gear system are practically investigated.

Measuring Technology of Continuous Method for Derailment Coefficient (연속식 탈선계수 측정기술)

  • You, Won-Hee;Ham, Young-Sam
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.138-143
    • /
    • 2006
  • Oscillatory wheel load fluctuation of considerable amplitude is almost always observed on railway vehicle running at high speed. From the acceleration measured on the axle-box, the frequency of this fluctuation is estimated to be approximately within 70 Hz. By the conventional measuring method, continuous outputs of wheel load can not be obtained, so it is difficult to investigate such a high frequency phenomenon exactly. We have developed a new method of measuring the forces and derailment coefficient continuously, using two pairs of strain gauge bridges whose output phases are shifted by 90 degree, and summing up the outputs with a weighting function. This method is available for measuring the forces between wheel and rail up to high frequency. In this paper, continuous method of measuring forces between wheel and rail and derailment coefficient.

  • PDF

A Study on Independent Steering & Driving Control Algorithm for 6WS/6WD Vehicle (6WS/6WD 차량의 독립조향 및 구동 제어알고리즘에 관한 연구)

  • Kim, Chang-Jun;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • Multi-axle driving vehicles that are used in special environments require high driving performance, steering performance, and stability. Among these vehicles, 6WS/6WD vehicles with middle wheels have structural safety by distributing the load and reducing the pitch angle during rapid acceleration and braking. 6WS/6WD vehicles are favored for military use in off road operations because of their high maneuverability and mobility on extreme terrains and obstacles. 6WD vehicles that using in-wheel motor can generate the independent wheel torque without other mechanical parts. Conventional vehicles, however, cannot generate an opposite driving force at each side wheel. Using an independent steering and driving system, six-wheel vehicles can show better performance than conventional vehicles. Using of independent steering and driving system, the 6 wheel vehicle can improve a performance better than conventional vehicle. This vehicle enhances the maneuverability under low speed and the stability at high speed. This paper describes an independent 6WS/6WD vehicle, consists of three parts; Vehicle Model, Control Algorithm for 6WS/6WD and Simulation. First, vehicle model is application of TruckSim software for 6WS and 6WD. Second, control algorithm describes the optimum tire force distribution method in view of energy saving. Last is simulation and verification.

Evaluation of Grinding Machining Characteristics of $ZrO_2$ Ferrule Using the Taguchi Method (다구치 방법을 이용한 지르코니아 세라믹스 페룰의 연삭 가공 특성 평가)

  • 김기환;최영재;홍원표;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.516-519
    • /
    • 2004
  • As the optical communication industry is developed, the demand of optical communication part is increasing. ZrO$_2$ ceramic ferrule is very important part which can determines the transmission efficiency and information quality to connect the optical fibers. In general ZrO$_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. And the co-axle grinding process of ZrO$_2$ ceramic ferrule is to make its concentricity all of uniform before centerless grinding. This paper deals with the analysis of the process parameters such as grinding wheel speed, grinding feedrate and regulating wheel speed as influential factors, on the concentricity and surface finish developed based on Taguchi's experimental design methods. Taguchi s tools such as orthogonal array, signal-to-noise ratio, factor effect analysis, etc. have been used for this purpose optimal condition has been found out. Thus, if possible be finding highly efficient and quality grinding conditions.

  • PDF

Grinding Characteristic of ZrO$_2$ Ceramics Ferrule (지르코니아 세라믹스 페룰의 연삭 특성)

  • 이석우;최영재;김기환;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1911-1915
    • /
    • 2003
  • Today optical communication industry is developed; demand of optical communication part is increased. ZrO$_2$ ceramic ferrule is very significant part which determines transmission efficiency and quality of information in the optical communication part by connector of optical fibers. Being different from metal grinding, material removal through brittle fracture plays an important role in ZrO$_2$ ceramic grinding. Most of ZrO$_2$ ceramic ferrule processes are grinding which request high processing precision. Particularly, concentricity and cylindricity of inner and outer diameter are very important. The co-axle grinding process of ZrO$_2$ ceramic ferrule is to make its concentricity all of uniform before centerless grinding. Surface integrity of ZrO$_2$ ceramic ferrule is affected by grinding conditions, and equipment. In this study, surface integrity of workpiece according to such as a change of grinding wheel speed, feed rate, regulating wheel speed and grinding force is investigate to improve the concentricity and roundness of ZrO$_2$ ceramic ferrule from many experiments. Thus, if possible be finding highly efficient and quality grinding conditions.

  • PDF