• 제목/요약/키워드: wheat cultivation

Search Result 164, Processing Time 0.032 seconds

Characteristics of Rice and Paddy Soil under No-Till Direct-Sown Rice-Wheat Cropping System

  • Cho, Young-Son;Choe, Zhin-Ryong;Lee, Byeong-Zhin
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.2
    • /
    • pp.153-161
    • /
    • 1999
  • No-till direct-sown rice-wheat relaying cropping system has major advantages such as labor and cost saving by eliminating tillage and preparation of seed bed and transplanting. In this system, rice sowing was done simultaneously wheat harvesting. A paddy field experiment was conducted to evaluate effects of no-till years on soil microbial changes and soil physico-chemical characteristics with rice growth and development. Chemical fertilizers and agricultrual chemicals was not applied in no-till system. As the year in no-till direct-sown system the air permeability was increased and after water submerging soluble nitrogen was released Aerobic microbial-n was highest in May and then decreased after water irrigation. The population of aerobic soil microorganisms were steeply decreased after water submerging Soil microorganisms was decreased with the increased the soil depth. A month was needed for the seedling establishment in a no-tillage rice-wheat cropping system. Increased cropping years improved leaf greenness and leaf area index(LAI). But stomatal conductance(Gc) was higher in conventional cultivation system than no-till system. Stomatal conductance at panicle initiation stage was increased higher in conventional condition of leaves but the difference between conventional and no-till system was increased at heading stage. In no-till 4 years condition rice grain yield was spikelet numbers per panicle.

  • PDF

A comparative study on the nitrogen utilization efficiency and growth rate of domestic keumgang and chokyeong wheat

  • Lee, Won Je;Jeong, Chan Young;Lee, Seokjin;Kang, Chon-Sik;Lee, Hojoung
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.67-71
    • /
    • 2019
  • All countries, including Korea, are currently experiencing the effect of rapid climate change. As a result, the cultivation area of many crops including wheat is changing, or productivity is falling sharply. If enough nitrogen is present in the soil, the increase in atmospheric carbon dioxide due to the greenhouse effect can lead to increased photosynthesis of plants, resulting in increased productivity. By contrast, a low proportion of nitrogen in soil does not increase production, often leading to the use of nitrogen fertilizers to increase crop productivity: this causes serious environmental pollution due to the leakage of nitrogen fertilizers used by crops. Increasing the understanding of the molecular level of the plant nitrogen use efficiency mechanism may contribute to increased productivity of crops and reduced of environmental pollution by nitrogen. In Korea, cultivars have developed 35 kinds of wheat, such as 'keumgang' and 'Chokyeong', which can be used for specific purposes such as baking or noodles. In this study we investigate 'keumgang' and 'Chokyeong' in order to elucidate the mechanism of nitrogen use ability of wheat and contribute to the reduction of environmental pollution by providing guidelines for the proper use of nitrogenous fertilizer.

Multivariate Characterization of Common and Durum Wheat Collections Grown in Korea using Agro-Morphological Traits

  • Young-ah Jeon;Sun-Hwa Kwak;Yu-Mi Choi;Hyemyeong Yoon;Myoung-Jae Shin;Ho-Sun Cheon;Sieun Choi;Youngjun Mo;Chon-Sik Kang;Kebede Taye Desta
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.343-370
    • /
    • 2023
  • Developing improved wheat varieties is vital for global food security to meet the rising demand for food. Therefore, assessing the genetic diversity across wheat genotypes is crucial. This study examined the diversity of 168 durum wheat and 47 common wheat collections from 54 different countries using twelve agro-morphological parameters. Geumgang, a prominent Korean common wheat variety, was used as a control. Both qualitative and quantitative agronomical characteristics showed wide variations. Most durum wheats were shown to possess dense spikes (90%), while common wheats showed dense (40%) or loose (38%) spikes, with yellowish-white being the dominant spike color. The majority of the accessions were awned regardless of wheat type, yellowish-white being the main awn color. White or red kernels were produced, with white kernels dominating in both common (74%) and durum (79%) wheats. Days to heading (DH) and days to maturity (DM) were in the ranges of 166-215 and 208-250 days, respectively, while the culm length (CL), spike length (SL), and awn length (AL) were in the ranges of 53.67-163, 5.33-18.67, and 0.50-19.00 cm, respectively. Durum wheats possessed the shortest average DH, DM, and SL, while common wheat had the longest CL and AL (p < 0.05). Common wheats also exhibited the highest average one-thousand-kernel weight. Hierarchical cluster analysis, aided by principal component analysis, grouped the population into seven clusters with significant differences in their quantitative variables (p < 0.05). In conclusion, this research revealed diversity among common and durum wheat genotypes. Notably, 26 durum wheat and 17 common wheat accessions outperformed the control, offering the potential for developing early-maturing, high-yielding, and lodging-resistant wheat varieties.

Difference of Agricultural Characteristics and Quality with Fertilizer Types in Wheat Cultivation (밑거름 종류에 따른 밀의 농업적 형질 및 품질 차이)

  • Kim, Hag-Sin;Kim, Young-Jin;Kim, Kyong-Hyun;Park, Hyung-Ho;Kang, Chon-Sik;Kim, Kyung-Ho;Hyun, Jong-Nae;Kim, Kee-Jong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.1
    • /
    • pp.15-19
    • /
    • 2013
  • This study was carried out to establish the optimum organic fertilization and microbial compost on wheat cultivation in order to reduce the use of chemical fertilizers and improve the quality of wheat. The tests resulted in a yield of organic fertilization of 2~6% lower than the yield of standard 4.16 Ton/ha (a yield more than that of microbial compost). The recession was not statistically significant. The trial which involved organic fertilizer that had a yield of 800 kg/ha and microbial compost which had a yield of 2,000 kg/ha resulted in 96% yield of standard trial. The quality of flour in the manure was 50% less during the trial and was not making a good result. In protein content and SDS-sedimentation volume, standard trial had the highest yield in test trial (standard > miccompost > organic fertilization). However, Ash content was not statistically significant.

Influence of Different Supplements on the Commercial Cultivation of Milky White Mushroom

  • Alam, Nuhu;Amin, Ruhul;Khair, Abul;Lee, Tae-Soo
    • Mycobiology
    • /
    • v.38 no.3
    • /
    • pp.184-188
    • /
    • 2010
  • Calocybe indica, known as milky white mushroom, grows and cultivated in the sub-tropical and temperate zones of South Asia. We investigated the most suitable supplements and their levels for the commercial cultivation of milky white mushroom. Rice bran, maize powder, and wheat bran with their different levels (10, 20, 30, 40, and 50%) were used as supplements to evaluate the yield and yield contributing characteristics of C. indica. Primordia initiation was observed between 13.5 and 19.3 days. The results indicated that the 30% maize powder supplement was effective for producing viable fruiting bodies. The maximum diameters of the pileus and stalk were observed with 30% maize powder. The highest biological and economic yield and biological efficiency were also obtained with 30% maize powder as a supplement. The results indicate that increasing the supplement level resulted in less biological efficiency, and that 30% maize powder was the best supplement level for rice straw substrate to cultivate milky white mushrooms.

Studies on the Protopectinase Produced by Verticillium sp. (Part 1) Optimum Conditions for the Protopectinase Production and Utilization (Verticillium sp.가 생산하는 Protopectin 용해효소에 관한 연구 (제 1 보) Protopectin 용해효소의 생산조건 및 이용)

  • 유주현;진효상;이봉기;오두환
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.1
    • /
    • pp.45-52
    • /
    • 1982
  • A fungus with the highest protopectinase productivity was selected among 205 strains isolated from the soil and identified as a Verticillium sp. The Verticillium sp. was cultivated on wheat bran and the crude extruct of its culture medium showed the highest protopectinase activity on the following conditions: 3 days of cultivation time, 27$^{\circ}C$ of cultivation temperature, 1.2 $m\ell$/g wheat bran of water content, and reinforcement of ammonium nitrate and calcium chloride at the concentration of 0.5 and 0.02%, respectively. The optimum conditions for pectin production from Citrus peel pulp by the protopectinase were consequently obtained as follows: 20$m\ell$/g of liquid volume-to-pulp weight ratio, 4$0^{\circ}C$ of reaction temperature, and 4 of reaction pH. The higher the enzyme concentration, the better the yield of pectin and the shorter the reaction time. Total 45.6mg of pectin/g peel was produced by 1 hour reaction at the enzyme concentration of 10.5 units/$m\ell$. Molecular weight of the pectin produced by the enzyme was estimated to be about 62,000 by Smit and Bryant's method.

  • PDF

Comparison of yield and its components in spring sown wheat and barley by path coefficient analysis

  • Choi, In-Bae;Kim, Hak-Sin;Hwang, Jae-Bok;Bae, Hui-Su;Ku, Bon-Il;Park, Hong-Kyu;Par, Tae-Seon;Lee, Geon-Hwi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.234-234
    • /
    • 2017
  • Recent abnormal weather, especially continued rainfall during sowing season causes difficulty in proper sowing of wheat and delayed sowing after November 15 is concerned about freezing damage during winter, resulting in reduction of wheat yield. To correspond government policy of crop sufficiency improvement and produce and supply raw wheat and barley steadily, expansion of cultivation area is necessary and spring sowing of wheat is required. To obtain basic information on the improvement of spring sown wheat and barley production, comparison and path coefficients analysis was conducted for yield and yield related components from autumn and spring sown wheat and barley. Path analyses were known as very useful in clarifying the effects of yield components on grain yield formation, which were not accurately reflected in simple correlation anaylses. Most cultivated 5 wheat and 9 barley cultivars were sown on October and February at Cheon-ju province according to standard sowing method. For the spring sowing of wheat and barley, the varieties having vernalization degree I~III are seeded in the mid of February and seeding rate is 200~250kg/ha which is increased by 25% than autumn sowing. N-fertilizer of 95 kg/ha and the same amount of P, K dressed in autumn are applied at once as basal fertilizer. The magnitude of direct effect in each yield components on yield was in sequence as follows. In autumn wheat, grain number per $spike{\geq}$ the number of spike per $m^2$>1000-grain weight and in spring wheat, grain number per $ spike{\geq}the$ number of spike per $m^2$> 1000-grain weight. In autumn naked barley, 1000-grain weight> the number of spike per $m^2$, grain number per spike and in spring barely, the number of spike per $m^2$> grain number per spike > 1000-grain weight. In autumn covered barley, grain number per spike>the number of spike per $m^2$ and in spring coverd barley, the number of spike per $m^2$> grain number per spike, 1000-grain weight. In autumn malt barley, the number of spike per $m^2$>1000-grain weight and in spring malt barley, the direct effects of three yield components were similar. According to the path analysis of yield components for spring sown wheat and barley, it was suggested that adequate number of spike per $m^2$ was most important factor for yield increase.

  • PDF

The Assembly and Application of High Yield Cultivation Technics for Mechanized Dry Farming in Heilongjiang Province of China

  • Shen, Taixiong;Zhang, Yuanlu;Liang, Henglu
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.228-237
    • /
    • 1996
  • On the basis of a brief introduction of the mechanized dry farming in Heilongjiang Province, the author states the developing process from the combination of single technics of farm machinery and agronomy to the technical assembly of high yield cultivation technics and its mathematical expression. According to the main temperature accumulated zones, 5 typical comprehensive technical assembly models for the mechanized cultivation technics and their agricultural machinery systems have been listed. They are, the Heihe " 261" wheat and soybean model : the Yi'an big ridge double row film mulching corn model : the Yongchang high yield mechanized soybean and other grain crops six year rotation model for Keshan state farms. The author conclude that the application of mechanized high yield cultivation technical assembly is the key point to transform the Heilongjiang province from big agriculture to strong agriculture, we have to take " high yield , high quality , high efficiency , s stain -ability and earning foreign currency" as the general target and carry out the corresponding policy and measures for the further development of agricuture.

  • PDF

Status of Mechanization of Small Farms in India

  • Ojha, T.P.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.263-269
    • /
    • 1996
  • In indian agricultural , the energy use pattern has played dominant role in influencing the level of mechanization . Besides that the agro-climatic factors as well as the size of holdings do affect the degree of mechanization . Nearly 30 percent of total cultivated area is owned by l76 percent of the small and tiny land holders each owning even less than a hectare. On the other hand, about 2 percent of land owners cultivate land. These variabilitieshave greatly influenced the ownership of power sources on Indian farms. Small farmers, employ human and animal energies with the use of hand tools and animal drawn equipments. Whereases, the use of tractors, power tillers, electric motors, etc. on small farms is on a marginal scale. There are few pockets and also extensive wheat growing regions where mechanical and electrical power sources are extensively used in production agriculture leading to about 185% of cropping intensity . In that region, the animal energy is employed for on the farm transport of fertilizers, fodders and fuel to support milch animals and other household activities . Inspite of high degree of mechanization, the harvesting of crops is done by human labour with few exceptions of harvesting wheat crops by combines in few pockets. In overall assessment of mechanization, the following conclusions are drawn : ⅰ) Farm operation which show a growing trend of mechanization are (a) tillge, (b) seedling (c) Irrigation (d) Plant protection application (e) Threshing and (f) Transport . ⅱ) Crop cultivation system in respect of wheat, maize and sorghum have been greatly mechanized. ⅲ) The least mechanized cropping systems are (a) vegetable production and (b) cultivation of sugarcane, cotton, rice and pulses. ⅳ) Annual production of tractor has touched the figure of 280.000 by 1995 and the total number has crossed 1.5million on Indian farms.

  • PDF

The Effects of Sodium Chloride and the Cultivation Method on Antioxidant Compounds and Activities in Wheat (Triticum aestivum) Sprouts (염화나트륨 처리 및 재배방법이 새싹밀의 항산화 성분 및 활성에 미치는 영향)

  • Yang, Ji Yeong;Lee, HanGyeol;Seo, Woo Duck;Lee, Mi Ja;Song, Seung-Yeob;Choi, June-Yeol;Kim, Hyun Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.3
    • /
    • pp.213-222
    • /
    • 2022
  • Sprouts have various health benefits. Specifically, wheat sprouts are rich in bioactive compounds, such as vitamins and polyphenols. Elicitation induces and enhances secondary metabolite biosynthesis in plants. Therefore, in this study, we investigated the effects of sodium chloride (NaCl) treatments on the growth profile, free amino acid content, and antioxidant activity of germinated wheat (Triticum aestivum). Wheat seeds were germinated at 20℃ for 10 days and treated with 0, 2, 4, 7.5, and 10 mM of NaCl 10 days before harvesting. Treating the soil bed with NaCl increased the nutritional component amounts, such as free amino acids and γ-aminobutyric acid. The chlorophyll a and b concentrations were the highest in the hydroponic system treated with 7.5 mM NaCl. In addition, the polyphenol and flavonoid contents of sprouts treated with 2 and 7.5 mM NaCl were 1.94 and 1.34 times higher than that of the control sprouts (0 mM NaCl, water only), respectively. These results suggest that 2 to 4 mM NaCl treatments improve the nutritional and food quality of wheat sprouts more than water only.