• Title/Summary/Keyword: wetland soils

Search Result 48, Processing Time 0.033 seconds

Effect of Tobermolite, Perlite and Polyurethane Packing Materials on Methanotrophic Activity (메탄산화세균의 활성에 미치는 tobermolite, perlite 및 Polyurethane 담체의 영향)

  • Jeong, So-Yeon;Yoon, Hee-Young;Kim, Tae Gwan;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.215-220
    • /
    • 2013
  • Biofilters for the removal of methane using tobermolite, perlite and polyurethane as packing materials have been undergoing recent development. The effects of these packing materials on methane oxidation activity were evaluated in this study. Mixed methanotrophs (consortia A, B, C and D) from wetland and landfill soils were used as the inoculum sources. The influences of packing materials, consisting of tobermolite, perlite, and polyurethane, on the methane oxidation rate and methanotrophic bio-mass, were estimated. When perlite was added into the methanotrophic cultures, the methane oxidation rate was more than twice that of the control (without packing materials), and the methanotrophic biomass increased more than 10 fold. The ratio of methanotrophic bacteria to total bacteria under with tobermolite packing material was higher than the control and the other packing materials, indicating that tobermolite can serve as a specific packing material where dominance of methanotrophs is desired. Therefore, perlite and tobermolite provide habitats which increase the activity of methanotrophic bacteria, and these packing materials are promising for use in methane oxidation processes.

Interrelationships among pH, pe, Fe++ and Water Soluble Phosphate in Reduced Soil- Water Suspension (환원(還元)된 토양현탁액중(土壤懸濁液中) pH, pe, Fe++ 및 수용성(水溶性) 인산간(燐酸間)의 관계(關係)에 관한 연구)

  • Yoon, Jung-Hui;Hong, Chong-Woon;Huh, Beom-Lyang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.3
    • /
    • pp.162-165
    • /
    • 1982
  • As an approach to the explanation of increased availability of phosphate in reduced wetland soils, the interrelationships among pH, pe, $Fe^{+{+}}$ and water soluble phosphate in reduced soil-water suspension was studied. 1. p.e value of soil incubated for 8 weeks at $30^{\circ}C$ under waterlogged condition was sufficiently low to allow the conversion of strengite to vivianite. 2. The concentration of water soluble $Fe^{+{+}}$ in this system was higher than that is allowable by the solubility of vivianite. 3. From the relationship between pH and the concentration of water soluble $Fe^{+{+}}$, the concentration of water soluble $Fe^{+{+}}$ could be determined with the solubility of $FeCO_3$. 4. No definite relationship between pH and water soluble P was recognized which implied that the concentration of water soluble P in this system could not determined with the solubility of vivianite.

  • PDF

Determination of Optimum Rate and Interval of Silicate Fertilizer Application for Rice Cultivation in Korea (벼에 대한 규산질비료의 시용량 및 시용주기 결정)

  • Song, Yo-Sung;Jun, Hee-Joong;Jung, Beung-Gan;Park, Woo-Kyun;Lee, Ki-Sang;Kwak, Han-Kang;Yoon, Jung-Hui;Lee, Choon-Soo;Yeon, Byeong-Yeol;Kim, Pil-Joo;Yoon, Young-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.354-363
    • /
    • 2007
  • In order to investigate the optimum rate and interval of silicate fertilizer application for rice cultivation, Chucheong byeo variety, one of commonly cultivated rice cultivar in Korea was planted on two different wetland rice soils located on Hwaseong-si from 2002 to 2005; Jisan series(a member of the fine loamy, mixed, mesic family of Fluvaquentic Endoaquepts), known as "Productive Paddy Soil", without any conspicuous limiting factor, and Seokcheon series (a member of the coarse loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquetps), known as "Sandy Paddy Soil", sandiness being major limiting factor. There were three rate treatments of silicate fertilizer application; the amount of silicate fertilizers needed to adjust the available soil silicate contents to 130, 200, and $270mg\;kg^{-1}$ was applied, in the first year only. There was an additional plot; applying the amount of silicate fertilizer needed to adjust soil available silicate to 130 ppm every year, which would serve as the base for the evaluation of residual effects of silicate fertilizers in the plots where different rates of silicate fertilizer were applied. From the yield data in first year, it was found that optimum available silica in the soil are $154mg\;kg^{-1$ and $160mg\;kg^{-1}$, in Jisan and Seogcheon soils, respectably. The duration of residual effects of silicate fertilizer was different depending upon the amount of applied silicate fertilizers and the soils. The higher the application rate, the residual effect lasted longer, and the residual effect was lasted longer in Jisan(clay loam) soil than in Seogcheon(sandy loam) soil. During four years, sum of the rate of contribution to increase available soil silica of applied silicate fertilizer in different soils ranged 18.6% and 24.1% in Jisan soil and Seogcheon soil, respectively. This may suggest that much portion of applied silicate would be either lost from the soil or remain in the soil as insoluble form. This deserves further study.

Study on effect on CO2 flux of wetland soil by feces of Korean water deer(Hydropotes inermis) (고라니(Hydropotes inermis)의 분변이 습지 토양의 CO2 flux에 미치는 영향)

  • Park, Hyomin;Chun, Seunghoon;Lee, Sangdon
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.283-292
    • /
    • 2015
  • The total global emission of $CO_2$ from soils is recognized as one of the largest fluxes in the global carbon cycle. Especially it is necessary to quantify the amount of $CO_2$ emitted by the organic material decomposition processes of microorganisms in the soil, because it becomes one of a factor for determining the carbon stocks in the soil. This study was conducted to estimate the impact of the Korean water deer(Hydropotes inermis)' feces to the soil organic matter. Also, effects of Korean water deer' feces on $CO_2$ emissions of soil and land use pattern dependent $CO_2$ flux quantification are studied. The organic materials in the Korean water deer' feces significantly changed organic matter content of soil and influenced the activity of soil microorganisms, both changing of respiration of the soil and physical chemical components in soil. In particular, C/N ratio and the $CO_2$ flux of soil of four regions (Rice paddy, Fallow ground, Salix koreensis community, Phragmites australis community) showed a statistically highly significant correlation (P<0.01) with the presence or absence of feces. $CO_2$ flux of soil affected by the feces was 2-20 times higher than the soil unaffected by the feces. This study has great significance to quantify the extent of the material circulation and its impact to the terrestrial ecosystem and soil zone throughout Korean water deer' feces. Feces of wildlife can affect soil and soil material circulation.

Effects of Soil Texture on Germanium Uptake and Growth in Rice Plant by Soil Application with Germanium (게르마늄 토양처리시 토성이 벼의 생육 및 게르마늄 흡수에 미치는 영향)

  • Lim, Jong-Sir;Seo, Dong-Cheol;Park, Woo-Young;Cheon, Yeong-Seok;Lee, Seong-Tae;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.245-252
    • /
    • 2008
  • The growth characteristics and the Germanium (Ge) uptake of rice plant (Hopyungbyeo) in soil with Ge were investigated under different soil textures to obtain the basic information for agricultural utilization of Ge. This study was carried out in the Wagner pot ($15,000^{-1}a$). Ge concentration in soils such as clay loam, silt loam, loam and sandy loam for rice plant cultivation was treated at $8mg\;kg^{-1}$. The growth status of rice plant was almost similar in all soil texture, and rice yield was higher in the order of silt loam > clay loam > loam > sandy loam. In rice bran, the Ge uptakes in silt loam, clay loam, loam and sandy loam were 980, 868, 754 and $803{\mu}g\;pot^{-1}$, respectively. The Ge uptakes of brown rice and polish rice were greater in the order of silt loam > sandy loam > clay loam > loam. In silt loam, the Ge uptake rates in leaf, stem, root, rice bran and brown rice were 19.7, 2.3, 0.03, 3.1 and 0.44%, respectively. Therefore, under the given experimental condition the optimum soil texture for production of functional rice with Ge is a silt loam.

Growth Environment Characteristics and Decline in Mt. Seunghak's Miscanthus sinensis Community (승학산 참억새군락의 생육환경 특성 및 쇠퇴에 관한 연구)

  • Park, Seul-Gi;Choi, Song-Hyun;Hong, Suk-Hwan;Lee, Sang-Cheol;Yu, Chan-Yeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.5
    • /
    • pp.14-28
    • /
    • 2017
  • Mt. Seunghak's Miscanthus sinensis community is not only a landscape resource in terms of cultural services within the Ecosystem Services but also a site that is visited by many mountaineers in autumn. As the current Miscanthus sinensis community has been experiencing a rapid decline due to Korean forest succession characteristics, ongoing artificial management is thought to be needed for landscape resource use. The purpose of this study was to determine growth environment characteristics and the cause of the rapid decline of the Miscanthus sinensis community in Mt. Seunghak, which is located inside a large city with a large scale and outstanding accessibility. As the Miscanthus sinensis community is the representative early vegetation that appears temporarily in dry, barren soil, the Miscanthus sinensis community in Korean forest succession tends to be unsustainable. As the current soil on Mt. Seunghak is inappropriately fertile for the Miscanthus sinensis community, other wetland woody plant communities are anticipated to succeed it. If Miscanthus sinensis community maintenance is needed for Miscanthus sinensis landscape scenery, various alternatives apart from overall Miscanthus sinensis community maintenance should be determined for cost-effective management. For example, while many byways toward the inside of the Miscanthus sinensis community have affected the Miscanthus sinensis community growth environment, the installation of wooden fences and ropes has been a control in approach. As a result of this positive effect, many byways toward the inside of Miscanthus sinensis community have been restored naturally. Through viewable range analysis, as good scenery sites on the observatory have a good viewable range on the main trail as well, if these scenery sites are intensively managed, effective Miscanthus sinensis ccommunity management will be done despite maintenance budget cutbacks. This study is expected to be used as a basic material regarding the alternatives for a sustained Miscanthus sinensis community and the possibility of cultivating other growth in poor soils of fallow fields and unused land.

Effect of Timing and Placement of N Fertilizer Application for Increased Use Efficiency - Principle and Practice (열대지역(熱帶地域)에 있어서 질소비료(窒素肥料)의 시용시기(施用時期)와 시비위치(施肥位置)가 비료효율(肥料效率)에 미치는 영향(影響) - 원리(原理)와 실제(實際))

  • Hong, Chong-Woon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.285-299
    • /
    • 1987
  • Timing and placement of fertilizer applications are two managerial means to improve the fertilizer use efficiency. The relative importance of these two means is determined by the application rate. With the realistic rate of N application recommended to the small farmers in the tropics, at present and in the near future, basal application in right manner, seems to be more important than split application at different times. In wetland rice soils, deep placement by whatever available means is desirable. But in the situations where perfect deep placement is very difficult to implement, the whole-layer application may be worth trying, until better methods become available. In rainfed uplands, N fertilizer application plans should be contingent upon the amount and distribution of rainfall: apply a less risky rate as subsurface banding near the crop rows to start with; then, depending upon the rainfall prospects in the season, apply or omit the additional dose. Because the patterns of crop response to N fertilizer can be significantly different between the research farms and farmers' fields, it seems imperative to have information on the patterns of crop response to N under farmers' management conditions, for the development of realistic fertilizer application recommendations. To enable the farmers to adopt improved fertilizer application technologies, it is essential to develop and make available to farmers convenient fertilizer applicators. Past experience with the improved fertilizer use technologies indicates that, in the long run, the development of fertilizers that are not only effective and convenient for farmers to use but also easy to produce without major modifications of existing fertilizer production systems is the ultimate solution to the problem of low N fertilizer use efficiency.

  • PDF

Fragipan Formation within Closed Depressions in Southern Wisconsin, United States (미국 위스콘신 남부지방의 소규모 저습지에 나타나는 이쇄반층(Fragipan)의 형성과정에 관한 연구)

  • Park S.J.;Almond P.;McSweeney K.;Lowery B.
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.2 s.113
    • /
    • pp.150-167
    • /
    • 2006
  • This study was conducted to determine the pedogenesis of dense subsurface horizons (denoted either Bx or Bd) observed within closed depressions and in toeslope positions at loess-covered glacial tillplains in southern Wisconsin. Some of these dense subsurface horizons, especially those occurring within depressions, show a close morphological resemblance to fragipans elsewhere, even though the existence of fragipans has not been previously reported in southern Wisconsin. The spatial occurrence of fragipans was first examined over the landscape to characterize general soil-landscape relationships. Detailed physico-chemical and micromorphological analyses were followed to investigate the development of fragipans within a closed depression along a catenary sequence. The formation of fragipans at the study site is a result of sequential processes of physical ripening and accumulation of colloidal materials. A very coarse prismatic structure with a closely packed soil matrix was formed via physical ripening processes of loess deposited in small glacial lakes and floodplains that existed soon after the retreat of the last glacier. The physically formed dense horizons became hardened by the accumulation of colloidal materials, notably amorphous Si. The accumulation intensity of amorphous Si varies with mass balance relationships, which are governed by topography and local drainage conditions. Well-developed Bx horizons evolve at closed depressions where net accumulation of amorphous Si occurs, but the collapsed layers remain as Bd horizons at other locations where soluble Si has continuously been removed downslope or downvalley. Hydromorphic processes caused by the presence of fragipans are degrading upper parts of the prisms, resulting in the formation of an eluvial fragic horizon (Ex).