• Title/Summary/Keyword: wetland construction

Search Result 138, Processing Time 0.03 seconds

Purification of Stream Water Quality by Subsurface-flow Wetland Facility (습지여상시설을 이용한 하천 수질정화)

  • Jung, Yong-Jun;Lim, Ki-Sung
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.456-461
    • /
    • 2006
  • The facility of constructed wet land combined with filter media was examined in order to improve the water quality of a polluted stream, which has been performed as a part of national projects. Throughout 2 years of operation for a stream, it can provide the design and operating parameters for the purpose of future construction. The influent flow rate was about 50% against the design capacity. The removal efficiencies of BOD, $COD_{Mn}$, SS, T-N and T-P were 62.9%, 47.1%, 74.8%, 22.4% and 33.5%, respectively. In order to keep this facility stable, the removal of surface filter media and supplement should be periodically conducted. In addition, the proper selection of sites is recommended not to be flooded.

Test-bed evaluation of developed small constructed wetland for using in urban areas (도시지역에 적용하기 위한 소규모 인공습지 Test-bed 시설 평가)

  • Kang, Chang-Guk;Lee, So-Young;Cho, Hye-Jin;Lee, Yuw-Ha;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.455-463
    • /
    • 2011
  • Conventional construction technologies have been continually applied without consideration of its impact to the environment. This resulted to various problems including the negative responses of local citizens that regarded some constructed facilities as aversive facilities causing environmental and hydraulic problems in the urban area, etc. To prevent these problems, therefore, alternative methods should be undertaken. A new approach termed "Low Impact Development (LID)" technology is currently adapted in developed countries around the world. This study aims to investigate the efficiency of the developed small constructed wetland (SCW) with horizontal subsurface flow as a LID technique applicable in urban areas. Two test-bed facilities were constructed and monitoring had been conducted between July 2010 and June 2011. Based on the findings, the removal efficiencies achieved for TSS, $COD_{Cr}$, TN, TP, Total Fe, Total Pb for the SCW-1 were 66, 53, 46, 55, 67 and 50%, respectively. On the other hand, the SCW-2 attained 82, 62, 51, 48, 74 and 42% efficiency for TSS, $COD_{Cr}$, TN, TP, Total Fe, Total Pb, respectively. The results indicated that the removal of particulate matter and heavy metals which are considered as main pollutants from stormwater runoff in urban areas was satisfactory in the system. Therefore, the test-beds proved to be appropriate for the treatment of pollutants in urban landuses such as road, parking lot, etc. The results of this study can contribute to the conservation of aquatic ecosystems and restoration of natural water cycle in the urban areas.

The Analysis of Eulsukdo Shoreline Change Using Multi-temporal Aerial Photo And DSAS Program (다시기 항공사진과 DSAS 기법을 이용한 을숙도 해안선 변화 분석)

  • Lee, Jae One;Kim, Yong Suk;Park, Sung Bae;Park, Chi Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • Eulsukdo located in the Nakdong Estuary plays important role in ecosystem and coastal wetland. There have been various changes in Eulsukdo up to now. Recently, we expect a great change of the western part of shoreline in Eulsukdo due to the floodgate construction but there is few databases. In this study, shorelines were digitized after we had produced the ortho-images by using aerial photos taken for 30 years(8 times). SCE, NSM and EPR were analysed by DSAS 4.2 program using vector data. In addition, the changes of shoreline were analysed in October 2011 from before Eulsukdo water gate construction to now by adding field surveying with VRS. The amount of years shoreline change is -0.34m/yr in 2009(before water gate construction) and -0.50m/yr in 2011(during the water gate construction), and the change trend shows an accumulation aspect.

Estimation of sediment deposition rate in collapsed reservoirs(wetlands) using empirical formulas and multiple regression models (경험공식 및 다중회귀모형을 이용한 붕괴 저수지(습지) 비퇴사량 추정)

  • Kim, Donghyun;Lee, Haneul;Bae, Younghye;Joo, Hongjun;Kim, Deokhwan;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.287-295
    • /
    • 2021
  • As facilities such as dam reservoir wetlands and agricultural irrigation reservoir wetlands are built, sedimentation occurs over time through erosion, sedimentation transport, and sediment deposition. Sedimentation issues are very important for the maintenance of reservoir wetlands because long-term sedimentation of sediments affects flood and drought control functions. However, research on resignation has been estimated mainly by empirical formulas due to the lack of available data. The purpose of this study was to calculate and compare the sediment deposition rate by developing a multiple regression model along with actual data and empirical formulas. In addition, it was attempted to identify potential causes of collapse by applying it to 64 reservoir wetlands that suffered flood damage due to the long rainy season in 2020 due to reservoir wetland sedimentation and aging. For the target reservoir, 10 locations including the GaGog reservoir located in Miryang city, Gyeongsangnam province in South Korea, where there is actual survey information, were selected. A multiple regression model was developed in consideration of physical and climatic characteristics, and a total of four empirical formulas and sediment deposition rate were calculated. Using this, the error of the sediment deposition rate was compared. As a result of calculating the sediment deposition rate using the multiple regression model, the error was the lowest from 0.21(m3km2/yr) to 2.13(m3km2/yr). Therefore, based on the sediment deposition rate estimated by the multi-regression model, the change in the available capacity of reservoir wetlands was analyzed, and the effective storage capacity was found to have decreased from 0.21(%) to 16.56(%). In addition, the sediment deposition rate of the reservoir where the overflow damage occurred was relatively higher than that of the reservoir where the piping damage occurred. In other words, accumulating sediment deposition rate at the bottom of the reservoir would result in a lack of acceptable effective water capacity and reduced reservoir flood and drought control capabilities, resulting in reservoir collapse damage.

Lifecycle cost assessment of best management practices for diffuse pollution control in Han River Basin (한강수계 비점오염원 저감시설의 생애주기비용 평가)

  • Lee, Soyoung;Maniquiz-Redillas, Marla C.;Lee, Jeong Yong;Mun, Hyunsaing;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.448-455
    • /
    • 2016
  • Diffuse pollution management in Korea initiated by the Ministry of Environment (MOE) resulted to the construction of pilot facilities termed Best Management Practices (BMPs). Twelve BMPs installed for the diffuse pollution management in the Kyung-An Stream were monitored since 2006. Data on the mass loading, removal efficiency, maintenance activities, etc. were gathered and utilized to conduct the evaluation of long-term performance of BMPs. The financial data such as actual construction, design and maintenance cost were also collected to evaluate the lifecycle cost (LCC) of BMPs. In this study, most of the maintenance activity was focused in the aesthetic maintenance that resulted to the annual maintenance cost of the four BMP types was closely similar ranging from 8,483 $/yr for retention pond to 8,888 $/yr infiltration system. The highest LCC were observed in constructed wetland ($418,324) while vegetated system had the lowest LCC ($210,418). LCC of BMPs was not so high as compared with the conventional treatment facility and sewage treatment plant. On the other hand, the relationship of removal efficiency on unit cost for TSS and TN was significant. This study will be used to design the cost effective BMP for diffuse pollution management and become models for LCC analysis.

Application of Subsurface Flow Wetland using the Phragmites australis for Water Quality Improvement of the Agricultural Reservoi (농업용 저수지 수질개선을 위한 지하흐름 갈대 인공습지의 적용)

  • Nam, Gui Sook;Pae, Yo Sop;Kim, Hyung Joong;Lee, Sang Joon;Lee, Gwang Sik
    • Journal of Wetlands Research
    • /
    • v.6 no.4
    • /
    • pp.59-69
    • /
    • 2004
  • Constructed wetlands are regarded as an important water treatment system for agricultural water quality improvement and management. The purpose of this study is to evaluate the application of subsurface flow wetland(SFW), using the Pharagmites australis as macrophytes, and to clarify the basic and essential factors to be considered in the construction and management of constructed wetlands. This study was carried out relatively short hydraulic residence time(HRT), 6hr ~ 72hr (3days), using eutrophic reservoir water with relatively low concentrations of influent and large quantity to be treated. The effluent satisfied the criteria of agricultural water quality. Removal efficiencies of Biochemical oxygen demand(BOD), Chemical oxygen demand(COD), Suspended solids(SS) and Chlorophyll a(Chl-a) were high in HRT 24hr, not any more significant increasement of removal efficiencies in HRT 48hr and 72hr. However, removal efficiencies of nitrogen and phosphorus increased as HRT increased, showing the highest efficiency at the 72hr of HRT in nitrogen, and 48hr in phosphorous. The SFW was very effective system for reservoir water quality improvement, and had the advantages of the reduction of purchasing cost to land required, lack of odors, and harmful insects, especially mosquito, the improvement of the scenic beauty and minimal risk of public exposure. Therefore, it was evaluated that the SFW was very available water treatment system for the water quality improvement of agricultural reservoir. However, it was need to consider with application of the SFW in high cost of construction and troublesome of management.

  • PDF

Distribution of Geomorphological Landscape Resources of Goryeong-gun, and Its Application Plan (고령군 지형경관자원의 분포와 활용방안)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.4
    • /
    • pp.279-289
    • /
    • 2008
  • The purpose of this paper is to search for geomorphological landscape resources of Goryeong-gun, to provide fundamental data for their management through mapping their distribution, and to present their conservation and application plan. The results are as follow: Firstly, geomorphological landscape resources in mountain area are Misungsan and Jusan mountain of Goryeong-up, Sangbiri valley of Deoggok-myeon, and isolated hill of Gaejin-myeon. Secondly, geomorphological landscape resources in riparian area are natural wetlands such as Jinchonneup of Bu-ri Gaejin-myeon, Hochonneup and Dalseongseupji of Hochon-ri Dasan-myeon, Bongsanneup of Bongsan-ri Ugok- myeon; artificial wetlands following the construction of weir such as riparian wetland of Oe-ri Goryeong-up and Banun-ri Gaejin-myeon; meander core and abandoned channel of Banun-ri Gaejin -myeon, river cliffs such as Naegok-ri Goryeong-up and Weolo-ri Ugok-myeon; sand bars and braided channel of Yajeong-ri Ugok-myeon. Thirdly, Jinchonneup swamp area of Bu-ri Gaejin-myeon have characteristics of typical floodplain landform, and its conservation conditions is relatively satisfactory, and its accessibility to metropolis is great, so it is a good place to construct eco-park. And construction of inquiry learning place at Banun-ri Gaejin-myeon will increase the opportunity to observe environmental changes following incised meander cutoff and ecological affirmative functions of a weir.

  • PDF

Principle of restoration ecology reflected in the process creating the National Institute of Ecology

  • Kim, A. Reum;Lim, Bong Soon;Seol, Jaewon;Lee, Chang Seok
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.105-116
    • /
    • 2021
  • Background: The creation of the National Institute of Ecology began as a national alternative project to preserve mudflats instead of constructing the industrial complexes by reclamation, and achieve regional development. On the other hand, at the national level, the research institute for ecology was needed to cope with the worsening conditions for maintaining biodiversity due to accelerated climate change such as global warming and increased demand for development. In order to meet these needs, the National Institute of Ecology has the following objectives: (1) carries out studies for ecosystem change due to climate change and biodiversity conservation, (2) performs ecological education to the public through exhibition of various ecosystem models, and (3) promotes regional development through the ecological industry. Furthermore, to achieve these objectives, the National Institute of Ecology thoroughly followed the basic principles of ecology, especially restoration ecology, in the process of its construction. We introduce the principles and cases of ecological restoration applied in the process. Results: We minimized the impact on the ecosystem in order to harmonize with the surrounding environment in all the processes of construction. We pursued passive restoration following the principle of ecological restoration as a process of assisting the recovery of an ecosystem degraded for all the space except in land where artificial facilities were introduced. Reference information was applied thoroughly in the process of active restoration to create biome around the world, Korean peninsula forests, and wetland ecosystems. In order to realize true restoration, we pursued the ecological restoration in a landscape level as the follows. We moved the local road 6 and high-voltage power lines to underground to ensure ecological connectivity within the National Institute of Ecology campus. To enhance ecological diversity, we introduced perch poles and islands as well as floating leaved, emerged, wetland, and riparian plants in wetlands and mantle communities around the forests of the Korean Peninsula in the terrestrial ecosystem. Furthermore, in order to make the public aware of the importance of the intact nature, the low-lying landscape elements, which have disappeared due to excessive land use in most areas of Korea, was created by imitating demilitarized zone (DMZ) landscape that has these landscape elements. Conclusions: The National Institute of Ecology was created in an eco-friendly way by thoroughly reflecting the principles of ecology to suit its status and thus the impact on the existing ecosystem was minimized. This concept was also designed to be reflected in the process of operation. The results have become real, and a result of analysis on carbon budget analysis is approaching the carbon neutrality.

Analysis of Ecological Variation after Creation of the Eco-pond (생태연못 조성공법 적용후의 자연생태 변화분석)

  • Lee, Eun Yeob;Moon, Seok Ki
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 2001
  • The purpose of this study is to evaluate the creation techniques of eco-pond, one of biotopes to promote biodiversity in urban residence area. Investigation were classified out plant, mammals, amphibia, reptiles, birds, fishes and insects. The results were summarized as follows: Around the eco-pond shows simple vegetation structurs, consisted of Pinus densoflora S et Z. and Robinia pseudoacacia under competition. In case of shrub, consisted of 4 species but plant growing appearence diversely by seasons. The evaluation of vegetation of eco-pond, there are found 4 species of aquatic plants. Inside the revetment of pond, Echinochloa crus-galli, Persicaria hydropiper, Digiaria sanguinalis, Cyperus microiria and Bidens frondosa L. are mainly distributed. Near the revetment, Trifolium repens L. and Digiaria sanguinalis are prevailed. And in its background, Erigeron canadensis, Erigeron annuus and vines are begins to make their appearances. When evaluation animals in eco-pond and contrast plot, it show simple species and numbers of mammals. It seemed to be resulted from its isolation and outside intervention by users In eco-pond, Pica pica and Streptopelia orientalis are mainly found and in contrast plot of Columba livia, which are so strong adaptation to city life environment. In case of amphibia and reptiles, none is observed in contrast plot, but in ecological pond, Rana nigromaculata and Hyla japonica are constantly observed. In case of insects, more species are found in eco-pond than contrast plot. And in eco-pond, more dragonflies are visibly increased one year after its construction. In floral zone inside of pond revetment, grasshopper and Locusta migratoria are frequently observed. In case of butterflies, they are mainly found in log fence and willow(salix) around eco-pond. In case of fishes inside of eco-pond, the species and its density are remarkable increased one year after the construction. With above evaluation results, we have identify the increase effect of biodiversity after construction of the eco-pond.

  • PDF

Evaluation of Ecological Values of the Southern Coastal Wetlands in South Gyeongsang Province, Korea (경상남도 남해안 연안습지의 생태적 가치평가)

  • Park, Kyung-Hun;Yu, Ju-Han;Song, Bong-Geun
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.4
    • /
    • pp.395-405
    • /
    • 2010
  • This study was carried out to offer basic data to minimize the indiscreet development and damage of coastal wetlands through an evaluation from an ecological standpoint highlighting the importance of the coastal wetland in South Gyeongsang Province, Korea. The result of the macrobenthos survey for the coastal wetland assessment showed that Dongdal and Hwasan-ri, Yongnam-myeon, and Tongyeong city had the largest species number; Oegan-ri and Naegan-ri, Geoje-myeon, and Geoje city had the largest population and biomass; and Miryong-ri, Samsan-myeon, Goseong-gun had the highest species diversity. In the halophytes survey, Imyeong-ri, Jinjeon-myeon, Masan city and Oegan-ri and Naegan-ri, Geoje-myeon, Geoje city had the large character species and companion species. The evaluation results of the ecological values of the coastal wetlands were categorized into five grades based on the field surveys, and the sedimentary environment factor in the case of Danghang-ri, Hoehwa-myeon, and Goseong-gun; Miryong-ri, Samsan-myeon, Goseong-gun; Guho-ri, Gonyang-myeon, Sacheon city; Sulsang-ri Yangpo-ri, Jingyo-myeon, Hadong-gun; and Seokpyeong-ri, Idong-myeon, Namhae-gun, were appraised at the highest rating of grade II. The halophytes factor in the case of Imyeong-ri, Jinjeon-myeon, Masan city, Dongdal-ri and Hwasan-ri, Yongnam-myeon, Tongyeong city and Oegan-ri and Naegan-ri, Geoje-myeon, Geoje city, were highly evaluated as grade II. The macrobenthos factor in the case of Imyeong-ri, Jinjeon-myeon, Masan city and Oegan-ri and Naegan-ri, Geoje-myeon, Geoje city was highly evaluated as grade II. The final evaluation grade was calculated by the mean values of three evaluation factors, and Imyeong-ri, Jinjeon-myeon, Masan city and Oegan-ri and Naegan-ri, Geoje-myeon, and Geoje city had the highest rating of II. On the other hand, Seokpyeong-ri, Idong-myeon, Namhae-gun had the lowest rating of IV. These locations will require future research to survey and monitor the coastal wetland ecosystems by season, in addition to the construction of the GIS-based wetland information system with a view to manage the coastal wetlands.