• Title/Summary/Keyword: wetland construction

Search Result 138, Processing Time 0.025 seconds

Recruitment and Succession of Riparian Vegetation in Alluvial River Regulated by Upstream Dams - Focused on the Nakdong River Downstream Andong and Imha Dams - (댐 하류 충적하천에서 식생이입 및 천이 - 낙동강 안동/임하 댐 하류하천을 중심으로 -)

  • Woo, Hyo-Seop;Park, Moon-Hyung;Cho, Kang-Hyun;Cho, Hyung-Jin;Chung, Sang-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.5
    • /
    • pp.455-469
    • /
    • 2010
  • Changes of geomorphology in alluvial river and vegetation recruitment on its floodplain downstream from dams are investigated both qualitatively and quantitatively focusing on the downstream of Andong dam and Imha dam on the Nakdong River. Results of the analyses of river morphology and bed material in the study site show a general trend of riverbed degradation with a max scour of 3 m and bed material coarsening from pre-dam value of 1.5 mm in D50 to post-dam value of 2.5 mm. Decrease in bed shear stress due to the decrease in flood discharge have caused vegetation recruitment on the once-naked sandbars. As result, the ratio of area of vegetated bars over total area of bars has drastically changed from only 7% in 1971 before the Andong dam (constructed in 1976) to 25% after it, and increased to 43% only three year after the Imha dam (constructed in 1992) and eventually to 74% by 2005. Analysis of the vegetation succession at Wicjeol subreach, one of the three subreaches selected in this study for detailed investigation, has clearly shown a succession of vegetation on once-naked sand bars to a pioneering stage, reed and grass stage, willow shrub and eventually to willow tree stages. At the second subreach selected, two large point bars in front of Hahoe Village seem to have maintained their sand surfaces without a signifiant vegetation recruitment until 2005. The sand bars, however, seem to have been invaded by vegetation recently, which warns river managers to have a countermeasure to protect the sand bars from vegetation invasion in order to conserve them for the historical village of Hahoe. On the other hand, recruitment and establishment of vegetation on the sand bars by artificial disturbance of the river, such as damming, can create an unique habitat of backmarsh in the sandy river, as shown in the case of Gudam Wetland, and may increase the biodiversity as compared with relatively monotonous sand bars. Last, the premise in this study that decrease in flood discharge due to upstream dams and decrease in bed shear stress can induce vegetation recruitment on the naked sand bars in the river has been verified with the analyses of the distribution of dimensionless bed shear stress along the selected cross section in each subreach.

Intertidal DEM Generation Using Satellite Radar Interferometry (인공위성 레이더 간섭기술을 이용한 조간대 지형도 작성에 관한 연구)

  • Park, Jeong-Won;Choi, Jung-Hyun;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.121-128
    • /
    • 2012
  • High resolution intertidal DEM is a basic material for science research like sedimentation/erosion by ocean current, and is invaluable in a monitoring of environmental changes and practical management of coastal wetland. Since the intertidal zone changes rapidly by the inflow of fluvial debris and tide condition, remote sensing is an effective tool for observing large areas in short time. Although radar interferometry is one of the well-known techniques for generating high resolution DEM, conventional repeat-pass interferometry has difficulty on acquiring enough coherence over tidal flat due to the limited exposure time and the rapid changes in surface condition. In order to overcome these constraints, we tested the feasibility of radar interferometry using Cosmo-SkyMed tandem-like one-day data and ERS-ENVISAT cross tandem data with very short revisit period compared to the conventional repeat pass data. Small temporal baseline combined with long perpendicular baseline allowed high coherence over most of the exposed tidal flat surface in both observations. However the interferometric phases acquired from Cosmo-SkyMed data suffer from atmospheric delay and changes in soil moisture contents. The ERS-ENVISAT pair, on the other hand, provides nice phase which agree well with the real topography, because the atmospheric effect in 30-minute gap is almost same to both images so that they are cancelled out in the interferometric process. Thus, the cross interferometry with very small temporal baseline and large perpendicular baseline is one of the most reliable solutions for the intertidal DEM construction which requires very accurate mapping of the elevation.

Grid Cell Analysis using Species Diversity Index of Birds in the Northern Area of Yeongjong Island, Incheon, Korea (영종도 북부지역의 조류 종다양도를 이용한 격자별 공간 분석)

  • Kang, Jong-Hyun;Cho, Hang-Soo;Lee, Yun-Kyoung;Kim, Dong-Won;Kim, Chang-Hoe;Kim, Myungjin;Bae, Yang-Seop
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.649-664
    • /
    • 2012
  • The grid cell analysis is used to select good sites as habitats at the region. The northern area of Yeongjong Island, Incheon has been disturbing by habitat loss due to human activities such as residential development, deforestation. In order to determine significant places as bird habitats and to select conservation areas at this island, the study area was divided into 70 grid cells($500{\times}500m$ each grid) and then each grid was ranked by spatial analysis using the species diversity index. Fieldwork was carried out in Spring and Autumn of 2010. To examine grid cells which were ranked high in both seasons in common, we used the average ranking value, combined data from two seasons. This area consists of mainly agricultural areas and forests(more than 68%) among eight habitat types: the agricultural land, forest, coast, lake, meadow, stream, city and other things. A total of 110 species was recorded: 4,183 birds of 102 species in Spring and 3,326 birds of 58 species in Autumn. In other words, the number of individuals and species was higher in Spring than in Autumn. Species diversity index presented the highest value at M8 grid cell in Spring(3.380) and at A4 gird cell in Autumn(2.736). In 18 of 22 grid cells where the average ranking value was higher than 3, the forest was distributed and in 4 grid cells, the coast and wetland were widely distributed, in which theses were located apart from human-associated disturbances such as construction works for a leisure complex. Our results present a new estimate method not only to minimize loss of bird habitats but also to conserve important habitats when the large-scale development takes place at particular region.

An analysis of the genetic diversity of a riparian marginal species, Aristolochia contorta (수변 경계종인 쥐방울덩굴의 유전적 다양성 분석)

  • Nam, Bo Eun;Park, Hyun Jun;Son, Ga Yeon;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.100-105
    • /
    • 2020
  • Northern pipevine (Aristolochia contorta) commonly inhabits marginal areas between waterside and terrestrial vegetation. In particular, A. contorta is ecologically important in the marginal areas as a food plant of dragon swallowtail butterfly (Sericinus montela), which is designated as vulnerable species in the Republic of Korea. For long-term sustainability of the plant population, assessment of the genetic diversity of exist populations should be conducted. Genomic DNA of A. contorta leaf samples were extracted from four populations where the vigorous growth were observed in the South Korea. Intra-population genetic diversity and inter-population genetic distance were assessed using randomly amplified polymorphic DNA (RAPD) with five polymorphic random primers. Overall genetic diversity was lower, compared to other wetland species (h: 0.0607 ~ 0.1401; I: 0.0819 ~ 0.1759), while GP showed the highest intra-population genetic diversity. Despite of the geographical distance, GP showed the larger genetic distance from other populations. This result seemed to be caused by the fragmented habitat and lower sexual reproduction of A. controta. Mixture of the different source populations and construction of the proper environmental condition such as shade and physical support for sexual reproduction should be considered for conservation of A. contorta population.

A Critical Analysis on Korea's Tidelands Policy : From a Sustainable Development Point of View (한국의 갯벌정책에 대한 비판적 소고: 지속가능한 발전의 관점에서)

  • Moon, Seogwoong
    • Environmental and Resource Economics Review
    • /
    • v.16 no.3
    • /
    • pp.575-605
    • /
    • 2007
  • Korea's tidelands policy IS examined and criticized in the paper. Korea's major tidelands in the west coast might disappear within a decade. The anachronistic development IS driven by the political interest group, forming coalition for reclamation and busily fulfilling its own profits under the facade of public good and regional development. But all regions of the world have been gradually scrapping the massive reclamation projects since the 1970's and active movements to reverse the reclamation and restore the nature are on the rise. In 1978, the U.S. Supreme Court decided to suspend the construction of the dam and to protect the snail darter despite that over 100 million dollars had been injected. This court ruling became famous and caused the American public to change their perception about the environment. In the Netherlands, following a prolonged discussion on pros and cons of reclamation, open type seawall was adopted to strike a balance among the available alternatives. Japan's Ministry of Environment was praised for forming the National Wetland Committee in order to designate 20 new Ramsar sites by 2008, with an objective to reach 33 designated Ramsar sites. Away from the large-scale reclamation projects, Korea has to move towards smaller-scale projects focusing on the knowledege intensive and circular economy society that are more in harmony with the environment.

  • PDF

Development of Composite Sensing Technology Using Internet of Things (IoT) for LID Facility Management (LID 시설 관리를 위한 사물인터넷(IoT) 활용 복합 센싱 적용기술 개발)

  • Lee, Seungjae;Jeon, Minsu;Lee, Jungmin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.312-320
    • /
    • 2020
  • Various LIDs with natural water circulation function are applied to reduce urban environmental problems and environmental impact of development projects. However, excessive Infiltration and evaporation of LID facilities dry the LID internal soil, thus reducing plant and microbial activity and reducing environmental re duction ability. The purpose of this study was to develop a real-time measurement system with complex sensors to derive the management plan of LID facilities. The test of measurable sensors and Internet of Things (IoT) application was conducted in artificial wetlands shaped in acrylic boxes. The applied sensors were intended to be built at a low cost considering the distributed LID and were based on Arduino and Raspberry Pi, which are relatively inexpensive and commercialized. In addition, the goal was to develop complex sensor measurements to analyze the current state o f LID facilities and the effects of maintenance and abnormal weather conditions. Sensors are required to measure wind direction, wind speed, rainfall, carbon dioxide, Micro-dust, temperature and humidity, acidity, and location information in real time. Data collection devices, storage server programs, and operation programs for PC and mobile devices were developed to collect, transmit and check the results of measured data from applied sensors. The measurements obtained through each sensor are passed through the Wifi module to the management server and stored on the database server in real time. Analysis of the four-month measurement result values conducted in this study confirmed the stability and applicability of ICT technology application to LID facilities. Real-time measured values are found to be able to utilize big data to evaluate the functions of LID facilities and derive maintenance measures.

Study on Optimal Location of Washland Based on Economic Analysis (경제성 분석에 의한 강변저류지 최적위치 선정에 대한 연구)

  • Ahn, Tae-Jin;Byeon, Chen-Il;Roh, Hee-Sung;Baek, Chun-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.681-694
    • /
    • 2010
  • In this study, methodology to determine optimal location of washlands based on economic analysis is presented. Install costs of washlands are calculated by construction cost and land compensatory cost and benefits of washlands are calculated from flood damage reduction and befit from using washland as wetland. Indirect approach for runoff-flood damage relationship is suggested and benefit-cost analysis is used for economic analysis. Economic analysis is added to existing models that used only flood reduction effect to determine optimal location of washlands. Suggested methodology is applied to 13 potential washlands in Anseong River basin to examine its applicability. Applied result of new methodology is compared with that of existing model. As the application results, it is possible to determine the optimal combinations of washlands can provide more economic benefit compared to existing studies. It is determined that considering economic analysis can be better option for decision making problem searching for optimal location of washlands.

Ventilation Corridor Characteristics Analysis and Management Strategy to Improve Urban Thermal Environment - A Case Study of the Busan, South Korea - (도시 열환경 개선을 위한 바람길 특성 분석 및 관리 전략 - 부산광역시를 사례로 -)

  • Moon, Ho-Yeong;Kim, Dong-Pil;Gweon, Young-Dal;Park, Hyun-Bin
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.6
    • /
    • pp.659-668
    • /
    • 2021
  • The purpose of this study is to propose a ventilation corridor management plan to improve the thermal environment for Busan Metropolitan City. To this end, the characteristics of hot and cool spots in Busan were identified by conducting spatial statistical analysis, and thermal image data from Landsat-7 satellites and major ventilation corridors were analyzed through WRF meteorological simulation. The results showed the areas requiring thermal environment improvement among hot spot areas were Busanjin-gu, Dongnae-gu, industrial areas in Yeonje-gu and Sasang-gu, and Busan Port piers in large-scale facilities. The main ventilation corridor was identified as Geumjeongsan Mountain-Baekyangsan Mountain-Gudeoksan Mountain Valley. Based on the results, the ventilation corridor management strategy is suggested as follows. Industrial facilities and the Busan Port area are factors that increase the air temperature and worsen the thermal environment of the surrounding area. Therefore, urban and architectural plans are required to reduce the facility's temperature and consider the ventilation corridor. Areas requiring ventilation corridor management were Mandeok-dong and Sajik-dong, and they should be managed to prevent further damage to the forests. Since large-scale, high-rise apartment complexes in areas adjacent to forests interfere with the flow of cold and fresh air generated by forests, the construction of high-rise apartment complexes near Geumjeongsan Mountain with the new redevelopment of Type 3 general residential area should be avoided. It is expected that the results of this study can be used as basic data for urban planning and environmental planning in response to climate change in Busan Metropolitan City.

An Analysis of Hydrological and Ecological Characteristics of River Wetlands -Case Study of Wangjin District in Geumgang River- (하천습지의 수문생태적 특성 분석 -금강 왕진지구를 사례로-)

  • SeungWon Hong;MiOk Park;BonHak Koo
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.315-325
    • /
    • 2023
  • This study analyzed the disturbance process of river wetlands based on modern and contemporary maps and aerial photographs, and analyzed land cover and NDVI changes in the hydro-ecological impact zone around the Wangjin District. A stable sandbar was formed near Wangjinnaru and was naturally connected to the agricultural land within inland, but after the sandbar and river wetland were destroyed due to heavy floods, embankment construction, land readjustment, and comprehensive river management, artificial replaced wetlands and ecological parks were created, and sandbars in the form of river island were restored again. The change in land cover in the hydro-ecological impact zone showed that rice paddies and fields in agricultural areas decreased from 36.3% in 2013 to 22.9% in 2022, with the largest change in area to 814,476m2. It was confirmed that the land cover was undergoing vegetation over time. Since the vegetation condition is good, a healthy food chain is formed in the waterfront ecosystem, which can be expected to be biodiversity-positive. Summarizing seasonal changes in the vegetation index, the overall change in the vegetation index was the largest in spring (March), followed by summer (June), and the change in autumn (September) was the smallest except for water. By land use, the overall vegetation index (NDVI) increased, including 39.1% improvement in alternative wetlands, 38.2% improvement in load, 44.3% improvement in ecological parks, 35.6% improvement in agricultural areas, and -8.1% decrease in water.

The Construction and Management of Artificial Wetland Using Emergent Macrophytes for High Biomass Production (대형정수식물을 활용한 높은 생산성의 인공습지 조성 및 관리)

  • Hong, Mun Gi;Heo, Young Jin;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.61-72
    • /
    • 2014
  • To present a guideline on the construction and management of artificial wetlands for high biomass production, three emergent macrophytes (Phragmites australis, PA; Typha angustifolia, TA; and Zizania latifolia, ZL) were planted under two substrates conditions (general soil with and without moss peat) and two water levels (5 cm and 20 cm) and monitored for three years. ZL showed greater growth performance rather than the others not only at early growth phase in the first year [shoot height, 200 cm; above-ground dry weight (AGDW), 500 $g/m^2$] but also in the last year (ZL, 1,100 $g/m^2$; TA, 770 $g/m^2$; and PA, 450 $g/m^2$ of AGDW). ZL with rapid growth at the early growth phase was not affected by naturally introduced weeds, whereas slower and poorer growth of PA and TA at the early growth phase resulted in relatively higher introduction and establishment of natural weeds. In turn, such introduced weeds negatively contributed to the growth of PA and TA particularly under shallow water (5 cm) with the substrate condition including moss peat. We suggest a plant material with rapid and great growth at the early phase such as ZL for reducing possible negative influences by the natural weeds and wild animals for high biomass production in constructed wetlands. A pre-growing process in greenhouse prior to planting might be an useful option to raise the competitiveness of those species when planting PA and/or TA. In addition, we recommend that integrated weed management system with utilizing various options at the most appropriate timing must be applied for maintaining sustainable high biomass production at the artificial wetlands.