• Title/Summary/Keyword: wet transfer

Search Result 175, Processing Time 0.03 seconds

The technical transfer on manufacture technique of environmental-friendly leather for improved effluent in beamhouse process (피혁 폐수의 오염 저감을 위한 피혁 준비 공정 기술 보급 (Hair saving liming agent 제조 기술 및 공정 적용 기술 보급))

  • Yun, Jous-Kuk;Cho, Do-Kwang;Park, Jae-Hyung;Baek, In-Kyu;Kim, Han-do
    • Clean Technology
    • /
    • v.10 no.2
    • /
    • pp.111-120
    • /
    • 2004
  • Manufacturing with a chemical for eco-friendly leather for nitrogen decrease of leather falling hair process waste water and the falling hair process that a number to decrease with sulfuration water decrease, a pollution load of COD, BOD. In this study manufactured lining agent and the unhairing assist product which did urea, mercaptan by basic matter. As a result of having dealt in hair saving process, compared, and was recalled by the existing hair burning process recovered hair, increased approximately 2times. Grain state to influence the yield that was quality of leather and an index of productivity evaluation, an improvement of contraction phenomenon (drawing) were possible. Is increased going seal, tear strength property of matter and softness and touch leather native nature in wet blue. Also, it is possible confirmation with decrease being more possible than about 50% COD, T-N density in a hair saving waste water.

  • PDF

Mass Transfer and Optimum Processing Conditions for Osmotic Conditions of Potatoes prior to Air Dehydration (열풍건조 전 감자의 삼투압농축시 물질이동과 공정의 최적화)

  • Kim, Myung-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.497-502
    • /
    • 1990
  • The effect of sugar concentration, immersion time and temperature on water loss, solid gain or loss, and sugar molality of potatoes during osmotic concentration was analyzed by a response surface methodology (RSM), and those values were predicted by using a second degree polynomial regression model. Effect of osmotic concentration and blanching on vitamin C retention of air dried potatoes (6% MC: wet basis) was also evaluated. The most significant factor was sugar concentration for water loss, solid gain or loss, sugar molality, rate parameter and retention of vitamin C. Second and third factors were immersion time and temperature respectively. Water loss and solid gain were rapid in the first 10 min and then levelled off. A 44.6% of water loss was observed during osmotic concentration using a sugar solution $(60\;Brix,\;80^{\circ}C$) with 20 min of immersion time. Dried potatoes after osmotic concentration had higher vitamin C content than dried potatoes after blanching. Optimum regions for osmotic concentration process of potatoes were $60-70^{\circ}C$ of immersion temperature, 60 Brix of sugar solution and 16-20 min of immersion time based on above 30% of water loss and 50% of vitamin C retention.

  • PDF

Optimal Design and Analysis of Ducted Fan Clutch With or Without Mechanical Lock-up (기계적 잠금장치의 적용여부에 따른 덕티드팬 클러치의 최적설계 및 분석)

  • Su-chul Kim;Jae-seung Kim;Sang-gon Moon;Geun-ho Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.10-15
    • /
    • 2023
  • Wet multi-disk clutch, a power switching device of the ducted fan, was optimized and results were analyzed. The clutch was divided into two types depending on whether a mechanical lock-up was applied or not. It was optimized under each design condition. Transfer torque capacity, friction material surface pressure, friction surface temperature, and drag torque were calculated as factors to optimize the clutch. The volume of separator plate and drag torque were used as the objective function for optimization. In the case of Type 1, which did not include a mechanical lock-up, the clutch could be operated regardless of the pitch angle of the ducted fan. However, the outer diameter of the friction surface was doubled, the volume was increased by 5~7 times, and the drag torque was increased by 7~12 times compared to those of Type 2, which included a mechanical lock-up.

Mass Transfer during Salting and Desalting Processes of Chinese Cabbage (배추의 염절임 및 탈염 공정중 물질이동)

  • Kim, Dong-Kwan;Kim, Myung-Hwan;Kim, Byung-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.317-322
    • /
    • 1993
  • The diffusion phenomena of water, solid and reducing sugar in Chinese cabbage during salting (5$0^{\circ}C$, 25% salt solution) and desalting (5$0^{\circ}C$, distilled water) were investigated. Water loss and solid gain during salting were rapid in the first 6hrs and then almost leveled off. After 24hrs of salting, water loss and solid gain in 100g of initial wet Chinese cabbage were 33.35g and 6.26g respectively. Moisture content was changed from 94.29% to 83.11% during 24hrs of salting. The reducing sugar concentration was also changed from 29.2 mg/$m\ell$ to 6.5mg/$m\ell$, which was linearized as a function of the square root of salting time and showing that Y=30.1841-5.0269√t. After 24hrs salting, water gain and solid loss during desalting were rapid in the first 4hrs and then increased linearly. After 12hrs of desalting, the water gain and solid loss in 100g of initial wet Chinese cabbage were 20.82g and 9.14g respectively. The amount of solid loss after 12hrs desalting was higher than that of solid gain after 24hrs salting due to the diffusion of solute presented initially in the Chinese cabbage during salting and desalting. The concentration of salt in Chinese cabbage after 12hrs desalting was 2.98% which was a suitable salt concentration for the preparation of Kimchi. At this time, the concentration of reducing sugar was only 1.6mg/$m\ell$. The linear regression equation of reducing sugar concentration during desalting was Y=6.7854-1.5992√t.

  • PDF

A Study on the Comparison among Effect of Thermal Dissipation of Backfill Materials for Underground Power Cables (지중송전관로 되메움재의 종류에 따른 열 소산 효과의 비교에 관한 연구)

  • Kim, You-Seong;Park, Young-Jun;Cho, Dae-Seong;Kim, Jae-Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.83-92
    • /
    • 2013
  • Backfill material with thermal resistivity which has $50^{\circ}C$-cm/Watt in wet and $100^{\circ}C$-cm/Watt in dry is requested to improve the power transfer capability for dissipation of heat production in underground power cables. In the field test performed by buried cable backfills, the backfill material developed from this study is compared with river sand and weathered soil (native soil) to investigate the effect of heat transfer in various seasons and locations of thermal sensors. As a result, the developed backfill material is faster approaching yielding temperature (critical heat) than that of river sand and weathered soil, and it has good dissipation capacity rather than other materials by keeping moisture content at dry season.

The Fabrication and Magnetoresistance of Nanometer-sized Spin Device Driven by Current Perpendicular to the Plane (수직전류 인가형 나노 스핀소자의 제조 및 자기저항 특성)

  • Chun, M.G.;Lee, H.J.;Jeung, W.Y.;Kim, K.Y.;Kim, C.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.61-66
    • /
    • 2005
  • In order to make submicron cell for spin-injection device, lift-off method using Pt stencil and wet etching was chosen. This approach allows batch fabrication of stencil substrate with electron-beam lithography. It simplifies the process between magnetic film stack deposition and final device testing, thus enabling rapid turnaround in sample fabrication. Submicron junctions with size of $200nm{\times}300nm$ and $500nm{\times}500nm$ 500 nm and pseudo spin valve structure of $CoFe(30{\AA})/Cu(100{\AA})/CoFe(120{\AA}$) was deposited into the nanojunctions. MR ratio was 0.8 and $1.1{\%}$, respectively and spin transfer effect was confirmed with critical current of $7.65{\times}10^7A/cm^2$.

Preliminary Mission Design for a Lunar Explorer using Small Liquid Upper Stage (소형 액체상단을 이용한 달 탐사선 임무 예비설계)

  • Choi, Su-Jin;Lee, Hoonhee;Lee, Sang-Il;Lee, Seok-Hee;Lee, Keejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2020
  • Upper stage of launch vehicle mainly injects a lunar explorer from low earth orbit to the moon at a distance of 380,000 km. In foreign lunar explorer, the upper stage is separated from the explorer after the explorer is injected into the earth-moon transfer trajectory, and the lunar explorer then uses on-board propellant to carry out mid-course correction maneuvers and lunar orbit insertion maneuvers. This study describes a newly presented small liquid upper stage. Using a small liquid upper stage with a wet mass of 2.9 tonnes, the lunar explorer not only can be injected earth-moon transfer trajectory but also can be performed lunar orbit insertion. This study provides acceptable mass range of the lunar explorer and the scope of acceptable mission range also describes based on the launch from Naro Space Center.

FTIR and Moisture Effects on Optical Information Transfer at Interface of Air and Glass (공기-유리 계면에서 광학정보 전달에 미치는 불완전 반사 및 수분 효과)

  • Han, Won Heum;Han, Ji Heum;Kim, Jee Hyen;Jung, Hyung Sik;Lee, Moon Ho
    • Journal of Adhesion and Interface
    • /
    • v.13 no.2
    • /
    • pp.73-84
    • /
    • 2012
  • The transfer mechanism of optical information at the interface of air and glass (the air-glass IF) has been investigated by thoroughly fulfilling the theoretical and experimental analyses regarding the FTIR (Frustrated Total Internal Reflection) and moisture effects on the fingerprint onto a glass cup with water. As for the fingerprint onto a glass cup with water its image was observed to be very vivid, which turned out to be due to the difference between the two light intensities reflected on the air-glass IF and the wet fingerprint ridge by manipulating the optical theories such as Fresnel relation, Snell's law, FTIR, GT (general transmission) and so on. In addition, the experimental inspection for FTIR and moisture effects on the fingerprint image also evidenced the fact that the vivid fingerprint image originated from the moisture effect rather than the FTIR phenomenon.

Heat Dissipation Trends in Semiconductors and Electronic Packaging (반도체 및 전자패키지의 방열기술 동향)

  • S.H. Moon;K.S. Choi;Y.S. Eom;H.G. Yun;J.H. Joo;G.M. Choi;J.H. Shin
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.41-51
    • /
    • 2023
  • Heat dissipation technology for semiconductors and electronic packaging has a substantial impact on performance and lifespan, but efficient heat dissipation is currently facing limited improvement. Owing to the high integration density in electronic packaging, heat dissipation components must become thinner and increase their performance. Therefore, heat dissipation materials are being devised considering conductive heat transfer, carbon-based directional thermal conductivity improvements, functional heat dissipation composite materials with added fillers, and liquid-metal thermal interface materials. Additionally, in heat dissipation structure design, 3D printing-based complex heat dissipation fins, packages that expand the heat dissipation area, chip embedded structures that minimize contact thermal resistance, differential scanning calorimetry structures, and through-silicon-via technologies and their replacement technologies are being actively developed. Regarding dry cooling using single-phase and phase-change heat transfer, technologies for improving the vapor chamber performance and structural diversification are being investigated along with the miniaturization of heat pipes and high-performance capillary wicks. Meanwhile, in wet cooling with high heat flux, technologies for designing and manufacturing miniaturized flow paths, heat dissipating materials within flow paths, increasing heat dissipation area, and reducing pressure drops are being developed. We also analyze the development of direct cooling and immersion cooling technologies, which are gradually expanding to achieve near-junction cooling.

Development of dry milling suitable rice cultivar to invigorate rice processing products

  • Jeung, Ji-Ung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.10-10
    • /
    • 2017
  • Rice consumption has been continuously decreasing as the eating habits of Koreans have become westernized and diversified. The per capita annual rice consumption in Korea has dropped sharply from 136.4 kg in 1970 to 61.9 kg in 2016. The Korean government, therefore, has been trying to promote rice consumption by invigorating the processed food industry using rice flour. To facilitate the market for processed rice foods, it is essential to develop proper milling technology in terms of flour particle size and damaged starch content to produce high quality rice flour at competitive cost. Dry milling and wet milling are the two major processes used to produce rice flour. Although the dry milling process is relatively simple with a lower production cost, damaged starch content increases because of the high grain hardness of rice. In wet milling, the quality of rice flour is improved by reducing flour particle size as well as damaged starch content through soaking procedures. However, the production costs are high because of the additional expenses associated with the disposal of waste water, sterilization and drying of the wet flour. Recently developed technologies such as jet milling and cryogenic milling also require expensive investment and production. Therefore, developing new rice cultivars with dry milling adaptability as well as good processing properties is an important goal of rice breeding in Korea. 'Suweon 542' is a floury endosperm mutant line derived from sodium azide treatment on a high-yield, early maturing, and non-glutinous japonica rice cultivar, 'Namil'. Compared with the wild type, after dry milling process, the grain hardness of 'Suweon 542' was significantly lower because of its round and loosely packed starch granules. Also, the flour of 'Suweon 542' had significantly smaller particles and less damaged starch than 'Namil' and other rice cultivars and its particle size distribution was similar to a commercial wheat cultivar. Recently, through collaborations with nine universities and food companies, a total of 21 kinds of processed prototypes, using the dry milling flour of 'Suweon 542', were evaluated. In the production of major rice processing products, there was no significant quality difference between the flours prepared by wet milling and dry milling. Although the amount of water added to the dough was slightly increased, it was confirmed that the recipe applying the wet flour could be used without significant change. To efficiently transfer the floury endosperm characteristics of 'Suweon 542' to other commercial rice cultivars, it is essential to develop DNA marker tightly linked to the target gene. Association analysis using 70 genome-wide SSR markers and 94 F2 plants derived from 'Suweon 542'/'Milyang 23' showed that markers on chromosome 5 explained a large portion of the variation in floury grains percentage (FGP). Further analysis with an increased number of SSR markers revealed that the floury endosperm of 'Suweon 542' was directed by a major recessive locus, flo7(t), located in the 19.33-19.86 Mbp region of chromosome 5, with RM18639 explaining 92.2% of FGP variation in the F2 population. Through further physical mapping, a co-segregate and co-dominant DNA marker with the locus, flo7(t) was successfully developed, by which, thereby, breeding efficiency of rice cultivars having proper dry milling adaptability with high yield potential or useful functional materials would be improved. 'Suweon 542' maintained the early maturity of the wild type, Namil, which can be used in rice-wheat double cropping systems in Korea not only for improved arable land but also for sharing flour production facilities. In addition to the high susceptibility against major rice diseases, nevertheless, another possible drawback of 'Suweon 542' is the high rate of viviparous under prolonged rainfall during the harvesting season. To overcome susceptibility and vivipary of 'Suweon 542', the progeny lines, derived from the crosses 'Suweon 542' and 'Jopyeong', an early maturing rice cultivar with multiple resistance against rice blast, bacterial blight, and rice strip virus, and 'Heugjinju', a anthocyanin pigment containing black rice cultivar, were intensively evaluated. As the outputs, three dry milling suitable rice elite lines, 'Jeonju614', 'Jeonju615', and 'Jeonju616' were developed.

  • PDF