• Title/Summary/Keyword: wet shrinkage

Search Result 69, Processing Time 0.027 seconds

Changes of HwBKP, SwBKP, OCC Handsheets' Drying Behavior and Physical Properties by Refining, Kneading and Wet Pressing (고해, 니딩, 습부압착에 의한 HwBKP, SwBKP, OCC 수초지의 건조 거동 및 물성 변화)

  • Lee, Jin-Ho;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.17-26
    • /
    • 2011
  • Drying behavior and physical properties of HwBKP, SwBKP, and OCC handsheets depending on kneading, refining and wet pressing were analyzed. The maximum drying shrinkage velocity was newly adopted to verify the effect of mechanical treatment of pulps by evaluating drying behavior according to varying the kneading, refining and wet pressing treatments. Those various treatments were changed to evaluate the relationship between the maximum drying shrinkage velocity and handsheets properties. When the drying shrinkage and the maximum drying velocity increased by refining and wet-pressing, handsheets strength was increased. The maximum drying shrinkage velocity showed higher correlation with physical properties of paper than WRV at different refining loads at SwBKP and mixed pulp. At high wet-web dryness, drying shrinkage, the maximum drying shrinkage velocity and strength properties of handsheet were increased. It meant that drying shrinkage behavior was highly affected by not only fibers' shrinkage but also fiber bonding. Kneading pre-treatment for KOCC and SwBKP effectively modified fiber properties and increasing paper strength and drying shrinkage. The effect of kneading pre-treatment was also confirmed by the maximum drying shrinkage velocity. Strength properties of mixed pulp handsheets were not increased by the kneading pre-treatment, although the maximum drying shrinkage velocity and WRV was increased. It meant that fibers network bonding of HwBKP was limited because of ves sels and ray cells' interference for bonding. Therefore in order to improve paper strengths containing HwBKP by mechanical treatments, interference of vessels and ray cells for fiber bondings should be carefully controlled.

A Study on Shrinkage Properties of Polytrimethylene Terephthalate (PTT) Drawn Textured Yarn (Polytrimethylene terephthalate(PTT) 가연사의 수축거동에 관한 연구)

  • Choi, Jae-Woo;Jang, Bong-Sik
    • Fashion & Textile Research Journal
    • /
    • v.6 no.4
    • /
    • pp.492-496
    • /
    • 2004
  • Shrinkage properties of drawn textured Poly(trimethylene terephthalate, PTT) yarn, which has been developed recently, were investigated to provide fundamental information for the textile industry. Shrinkage ratio characteristics on PTT yarn with six different count were investigated with tension, dry and wet thermal temperature. In non-tension, the shrinkage ratio were increased to increasing temperature at dry and wet thermal treatment, and in tension, the shrinkage ratio were increased to increasing tension at dry and wet thermal treatment.

The effects of knit stitches on the knit construction and the dimensional stability to washing and drying of wool weft-knitted fabrics (세탁과 건조에 따른 양모 위편성물의 편성조직별 형태 변화)

  • Park, Seeun;Baek, Seong Phil;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • The purpose of this study is to analyze the structural properties of 100% wool fabrics knitted with various stitch types and to evaluate dimensional stability from shrinkage in wet cleaning and drying. Materials were weft-knitted from twenty-four different stitches with 7 gauge using a computerized flatbed knitting machine. Weight, thickness, density, and length were measured. A domestic washing machine and a tumble dryer were used for the shrinkage test. The results are as follows: Knitted fabrics were divided into 3 groups based on weight per unit area. Porous knits show light weight whilst milano, pintuck, rib stitches belong to the heaviest group. A positive correlation between weight and thickness was found and the same result was obtained for wale density and weight. Dimensional shrinkage of knitted fabrics was increased during repetitive wet cleaning and drying regardless of knit stitches. Especially, fabrics knitted with float, tuck, cable, and links & links stitches samples were contracted more than 15% in the first treatment whereas 2x1 rib stitch showed 1% shrinkage rate. Fisherman and milano stitches contracted in both course and wale direction with similar shrinkage rates. However, porous knits with float and tuck stitches shrank in course direction by 20% as well as cable samples contracted from 5% to 20% after repeated washing and drying. On the other hand, 30% and 15% contraction of wale direction occurred in orderly float and links & links stitches, respectively. Machine dried knits have a higher shrinkage rate than air-dried knits, but the drying method did not affect to the direction of contraction. In conclusion, variations of knit, tuck, and float stitches affect knit construction and dimensional stability from shrinkage in wet cleaning and drying of wool knitted fabrics.

Effect of Manufacturing Condition on the Physical Properties of TTD Yarns with Hot Plate Device (Hot Plate장치를 이용한 TTD사 제조조건에 따른 사의 물성변화 연구)

  • Song, Min-Kyu;Kim, Hi-Dong;Kwon, Oh-Kyung
    • Fashion & Textile Research Journal
    • /
    • v.7 no.2
    • /
    • pp.247-251
    • /
    • 2005
  • In this the study, the effects of the manufacturing process conditions on the properties Thick and Thin Diameter yarns(TTD yarns) prepared with hot plate device in the draw winder were determined. Physical properties including wet shrinkage, tenacity and elongation of the samples were measured and thick and thin effect was analysed with the evenness tester. The results were as the follows: There was little change the wet shrinkage of the TTD yarns in the range of $70^{\circ}C{\sim}80^{\circ}C$ of $R_1$ temperature(lower hot cylinder) with the same Hot Plate(H/P) temperature, but the wet shrinkage of the TTD yarns decreased 5-10% when $R_1$ temperature was $90^{\circ}C$. The wet shrinkage of the TTD yarns decreased with the H/P temperature at the same temperature of $R_1$. There was little effect of $R_1$ and H/P temperature on the tenacity of TTD yarns. The elongation of TTD yarns increased with $R_1$ temperature at the same H/P temperature. The elongation of TTD yarns increased little bit for the first time and then decreased above that temperature with increasing H/P temperature at the same $R_1$ temperature. The thick and thin effect on the TTD yarns was obvious in $110^{\circ}C$ of H/P temperature regardless of $R_1$ temperature, while there was no thick and thin effect on the TTD yarns in $140^{\circ}C$ of H/P temperature.

Shrinkage and Creep Behavior of Annealed PET Filament in High Speed Spinning (고속방사 PET filament의 열처리에 따른 수축 및 Creep 거동에 관한 연구)

  • Park, Young-Kun;Koo, Ja-Gil;Chang, Dong-Ho
    • Textile Coloration and Finishing
    • /
    • v.9 no.4
    • /
    • pp.7-19
    • /
    • 1997
  • The purpose of the study was to investigate the shrinkage and creep behavior of PET filaments which were prepared at various spinning speeds(3,300, 4,000, 5,000, 6,000, and 7,000m/min) and anneal($120^{\circ}$, 30min & $150^{\circ}$, 40min). In order to determine the shrinkage and creep behavior with the crystallinity change, PET filaments were treated with low(12$0^{\circ}C$, 30min) and high($150^{\circ}$, 40min) temperature conditions with hot air dryer under the constant tension. The results of the study were as follows: as the spinning speed increased, the degree of shrinkage and elongation of the sample treated by wet condition decreased. The sample with 0.01g/d of load under various spinning speeds showed shrinkage behavior and highest shrinkage ratio at $76^{\circ}$ which was Tg of PET. The degree of shrinkage and elongation of the treated sample was less than those of the untreated sample by wet treatment. Especially, there was less degree of shrinkage and elongation of the sample treated by higher temperature condition. In 3,300m/min of spinning speed the draw ratio of undrawn yarn of a mixture of a-axis orientation and c-axis orientation was 2.0, which is similar to the value of the traditional drawn yarn. Finally, there was a big range of shrinkage and elongation by wet treatment in 3,300 m/min of spinning speed.

  • PDF

Improvement of Paper Bulk and Stiffness by Using Drying Shrinkage Analysis (건조수축 해석을 통한 종이의 벌크 및 강직성 향상)

  • Lee, Jin-Ho;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.4
    • /
    • pp.49-58
    • /
    • 2011
  • The maximum drying shrinkage velocity was proposed to verify bulk and stiffness improvement mechanism during drying according to papermaking parameters. It was based on the wet-web shrinkage behavior without the restraint of wet-web during drying, so intact drying impact could be measured. Bulking agent reduced the drying shrinkage and the maximum drying shrinkage velocity, so paper bulk increased and paper strength decreased. When adding cationic starch to stock with the bulking agent for strengthening, the bulk was increased further with additional decreasing of the drying shrinkage and the maximum drying shrinkage velocity. Paper strength also increased except tensile stiffness index with decreasing the drying shrinkage and the maximum drying shrinkage velocity. When using additional strength additives for strengthening of fiber interfaces extended by bulking agent and cationic starch, amphoteric strength additive increased paper stiffness without loss of paper bulk. It was considered that the added amphoteric strength additives were cross-linked to the stretched cationic starch and this cross-linking increased elasticity of fiber-polymer-fiber interfaces without changing the drying behavior. Paper bulk could be increased with decreasing the maximum drying shrinkage velocity. The drying shrinkage of paper also could be controlled by fiber-to-fiber bonding interfaces by the bulking agent. In this case, paper strength including stiffness was decreased by reducing fiber-to-fiber bonding but it could be improved by strengthening fiber-to-fiber interfaces with polymer complex without loss of bulk.

Comparison on Characteristics of Concrete Autogenous Shrinkage according to Strength Level, Development Rate and Curing Condition (콘크리트 강도, 발현 속도 및 양생조건에 따른 자기수축 특성 비교)

  • Yang, Eun-Ik;Shin, Jung-Ho;Choi, Yoon-Suk;Kim, Myung-Yu;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.741-747
    • /
    • 2011
  • In this study, autogenous shrinkage strain and prediction models of concrete specimens were compared with strength level and development rate. Also, concrete autogeneous shrinkage under various curing conditions was investigated. The results showed that autogeneous shrinkage increased as concrete strength increased. However, when the concrete strength was almost identical, the initial autogeneous shrinkage of OPC was larger than BFS, but the final autogeneous shrinkage of BFS was larger than OPC. Early wet curing reduced autogeneous shrinkage strain. Especially, when the early wet curing was applied for more than 24 hours, final autogeneous shrinkage was significantly reduced. The results showed that the existing EC2 models do not reflect concrete properties properly. Therefore, the revised model was proposed to better predict autogeneous shrinkage.

Effects of Spinning Conditions on Properties of Polyester Yarn Prepared using an Ultra-high-speed Melt Spinning Technique Equipped with a Steam Chamber

  • Ho, Yo-Seung;Kim, Hak-Yong;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3252-3258
    • /
    • 2010
  • In this study, the effects of the various parameters of spinning and drawing processes on the properties of polyester full drawn yarn (FDY) prepared by steam processing during high-speed spinning were investigated using several techniques. The wet shrinkage ratio of the FDY was able to be manipulated by controlling the temperature and draw ratio. The FDY made using the steam high speed spinning technique exhibited identical properties (such as tenacity, elongation, and wet shrinkage ratio) to that of regular FDY, made using the spin-draw process. FDY prepared using the steam process during high-speed spinning showed excellent dyeability. The dye pick-up of the polyester yarn spun at high-speed spinning was found to be improved when dyed under an atmospheric pressure of $100^{\circ}C$. This result was the same as regular FDY dyed under a high pressure of $130^{\circ}C$.

Effect of low-calcium fly ash on sulfate resistance of cement paste under different exposure conditions

  • Zhang, Wuman;Zhang, Yingchen;Gao, Longxin
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 2019
  • Low-calcium fly ash (LCFA) were used to prepare cement/LCFA specimens in this study. The basic physical properties including water demand, fluidity, setting time, soundness and drying shrinkage of cement/LCFA paste were investigated. The effects of curing time, immersion time and wet-dry cycles in 3% $Na_2SO_4$ solution on the compressive strength and the microstructures of specimens were also discussed. The results show that LCFA increases the water demand, setting time, soundness of cement paste samples. 50% and 60% LCFA replacement ratio decrease the drying shrinkage of hardened cement paste. The compressive strength of plain cement specimens decreases at the later immersion stage in 3% $Na_2SO_4$ solution. The addition of LCFA can decrease this strength reduction of cement specimens. For all specimens with LCFA, the compressive strength increases with increasing immersion time. During the wet-dry cycles, the compressive strength of plain cement specimens decreases with increasing wet-dry cycles. However, the pores in the specimens with 30% and 40% LCFA at early ages could be large enough for the crystal of sodium sulfate, which leads to the compressive strength increase with the increase of wet-dry cycles in 3% $Na_2SO_4$ solution. The microstructures of cement/LCFA specimens are in good agreement with the compressive strength.

Influence of Curing Methods on Compressive Strength and Shrinkage of High Strength Mortar with High Volume SCMs (양생방법 변화가 혼화재 다량치환 고강도 모르타르의 압축강도 및 수축변화에 미치는 영향)

  • Han, Cheon-Goo;Baek, Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.33-40
    • /
    • 2018
  • Currently, in South Korea, because of reducing the construction period or treating wasted water, there are some cases of missing wet curing for concrete structure even though for high strength concrete. This air curing conditions is considered to cause increased possibility of compressive strength decrease, and increasing drying or autogenous shrinkages. As a solution of shrinkage of concrete, The authors' research team conducted the research on improving durability of concrete with decreasing autogenous shrinkage by adding the oil or fat to induce the saponification. Therefore, in this research, the influence of curing method on compressive strength, shrinkage on evaporation rate of high strength mortar including high volume supplementary cementitious materials (SCMs) was evaluated depending on various curing methods such as air curing, drying after painting emulsified refined cooking oil (ERCO), and drying after 7 and 28 days' wet curing. The experimental result showed the air curing method caused approximately 50% of decreased compressive strength and 1.9 times of increased shrinkage rather than the 28-day-wet curing method, thus it was known that the wet curing significantly influences on performance of high strength mortar using high volume SCMs. However, the ERCO painting curing caused decreased performance of concrete rather than drying after 7 days curing while it caused improved performance of concrete than entire period air curing.