• Title/Summary/Keyword: wet season

Search Result 283, Processing Time 0.027 seconds

Phytoplankton Community and Surrounding Water Conditions in the Youngsan River Estuary: Weekly Variation in the Saltwater Zone (영산강 하구의 식물플랑크톤 군집 및 수 환경: 해수역의 주별 변동)

  • Sin, Yongsik;Yu, Haengsun
    • Ocean and Polar Research
    • /
    • v.40 no.4
    • /
    • pp.191-202
    • /
    • 2018
  • In this study we conducted a weekly monitoring exercise at a fixed station in the saltwater zone during the dry season (Jan-Mar, 2013) and wet season (Jun-Aug, 2013) to understand the fluctuations in phytoplankton communities and environmental factors in the Youngsan River estuary altered by a dike constructed in the coastal area. Phytoplankton communities displayed seasonality; diatoms were dominant during the dry season whereas dinoflagellates were dominant during the wet season. T-test analysis showed that water temperature was significantly different between the seasons whereas freshwater discharge from the dike was not significantly different. This suggests that seasonal variations of phytoplankton are more likely affected by water temperature than freshwater discharge. However, a short-term fluctuation was also observed in response to freshwater discharge; freshwater species appeared during or after the discharge in the dry and wet seasons and blooms of harmful species developed after the discharge. Phytoplankton communities may be affected by changes in physical factors such as turbidity and salinity and nutrient supply resulting from freshwater discharge. Especially, the nutrient supply may directly contribute to the harmful algal blooms (HABs) composed of dinoflagellates which can adapt to low salinity after freshwater discharge.

Seasonal changes in the reproductive performance in local cows receiving artificial insemination in the Pursat province of Cambodia

  • Tep, Bengthay;Morita, Yasuhiro;Matsuyama, Shuichi;Ohkura, Satoshi;Inoue, Naoko;Tsukamura, Hiroko;Uenoyama, Yoshihisa;Pheng, Vutha
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1922-1929
    • /
    • 2020
  • Objective: The present study aimed to survey seasonal changes in reproductive performance of local cows receiving artificial insemination (AI) in the Pursat province of Cambodia, a tropical country, to investigate if ambient conditions affect the reproductive performance of cows as to better understand the major problems regarding cattle production. Methods: The number of cows receiving AI, resultant number of calving, and calving rate were analyzed for those receiving the first AI from 2016 to 2017. The year was divided into three seasons: cool/dry (from November to February), hot/dry (from March to June), and wet (from July to October), based on the maximal temperature and rainfall in Pursat, to analyze the relationship between ambient conditions and the reproductive performance of cows. Body condition scores (BCS) and feeding schemes were also analyzed in these seasons. Results: The number of cows receiving AI was significantly higher in the cool/dry season than the wet season. The number of calving and calving rate were significantly higher in cows receiving AI in the cool/dry season compared with the hot/dry and wet seasons. The cows showed higher BCSs in the cool/dry season compared to the hot/dry and wet seasons probably due to the seasonal changes in the feeding schemes: these cows grazed on wild grasses in the cool/dry season but fed with a limited amount of grasses and straw in the hot/dry and wet seasons. Conclusion: The present study suggests that the low number of cows receiving AI, low number of calving, and low calving rate could be mainly due to poor body condition as a result of the poor feeding schemes during the hot/dry and wet seasons. The improvement of body condition by the refinement of feeding schemes may contribute to an increase in the reproductive performance in cows during the hot/dry and wet seasons in Cambodia.

Analysis of Water-quality Improvement Efficiency of Constructed Wetland Using NPS-WET Model (NPS-WET 모형을 이용한 인공습지의 수질정화효과 분석)

  • Rhee, Han-Pil;Jung, Kwang-Wook;Lee, Bok-Soo;Ham, Jong-Hwa;Son, Yeong-Kwon
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.320-331
    • /
    • 2012
  • A combination system of catch canal and constructed wetland was designed and suggested to improve water quality in gagricultural region of lower Dong-jin river basin. In order to evaluate an water quality improvement efficiency of the designed combination system, the NPS-WET model was applied in this study. Simulation result of the NPS-WET shown that the nutrient load removal rate of constructed wetland was BOD, T-N, T-P and SS was 30.7~39.0%, 46~60%, 40.7~57.0% and 68.2~74.7%, respectively. Nutrients reduction of constructed wetland was higher in growing season than winter season because vital activity of microorganism, macrophyte and algae was augmented with high air and water temperature. Effluents from constructed wetland can affect water-quality of catch canal drains, especially, water-quality on junction point to Dong-jin river. Water-quality improvement in low-flowed catch canal (Un-san) was more significant than in high-flowed catch canal (Won-pyeong). In conclusion, a feasible design of constructed wetland is necessary to treat large quantity of receiving water. The NPS-WET is useful tool for assessing water-quality improvement efficiency using constructed wetland.

A Study on Hydrochemistry Characteristics of Groundwater and Surface water near a Petroleum Contaminated area (유류오염지 주변 지하수와 지표수의 수화학적인 특성 연구)

  • Lim, Hong-Gyun;Lee, Jin-Yong;Park, Youngyun;Park, Yu-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.10-19
    • /
    • 2012
  • The aim of this study was to examine chemical and isotopic compositions of groundwater and lake water near an area contaminated by petroleum and to evaluate influence of petroleum on them during the period from March to August 2011. In dry season, $Ca^{2+}$ and $SO{_4}^{2-}$ were dominant in the groundwater and lake water and $Ca^{2+}$ and $HCO{_3}^-$ were significant in wet season. ${\delta}^{18}O$ and ${\delta}D$ of the groundwater and lake water were plotted near LMWL (${\delta}D=8.06{\delta}^{18}O+12.5$). ${\delta}^{18}O$ and ${\delta}D$ of the lake water did not show seasonal variation. However, ${\delta}^{18}O$ and ${\delta}D$ of the groundwater were enriched in wet season compared with those in dry season because of influence of small ponds around wells where evaporation losses were slightly experienced. Redox condition of most lake water was oxidation environment in contact with the atmosphere during the study period. However, redox condition of groundwater was transitional environment in dry season and oxidation environment in wet season because of influence of contaminant such as petroleum. In some groundwater, the concentrations of $NO{_3}^-$ in some groundwater were less than 1 mg/L because of denitrification. Also, $NO{_3}^-$ showed positive correlation with $SO{_4}^{2-}$ and weak negative correlation with $HCO{_3}^-$, because of influence of denitrification.

Monthly Variation Analysis of BOD, COD and TOC using Long-term Observation Data in the Downstream of the Nam River (남강 하류부에서 장기관측 자료를 이용한 유기물과 생물학적/화학적 산소요구량의 월 변동 분석)

  • Kang, Dong-hwan;So, Yoon Hwan;Park, Kyeong-Doek;Kim, Il-kyu;Kim, Byung-Woo
    • Journal of Environmental Science International
    • /
    • v.28 no.6
    • /
    • pp.571-579
    • /
    • 2019
  • In this study, monthly average values of BOD, COD, and TOC observed for 10 years (2008-2017) in the Nam River were estimated, and monthly variations of BOD, COD, and TOC were analyzed. Monthly average COD was always higher than monthly average BOD; monthly average TOC was high from June to September when rainfall was high. Monthly correlation coefficients between BOD and COD ranged from 0.57 to 0.94, those between BOD and TOC from 0.45 to 0.93, and those between COD and TOC from 0.75 to 0.93. The correlation coefficients were high from November to February when rainfall was low. Regression analyses for monthly average water quality data of the Nam River classified into dry season (October to April) and wet season (May to September) were conducted. Correlation coefficients were higher in the dry season than those in the wet season, and the determination coefficients of linear regression functions for BOD and COD with TOC were also higher in the dry season than those in the wet season. From this study, it can be concluded that it is appropriate to use monthly data to analyze the correlations among BOD, COD, and TOC in the stream. To analyze the relationship between TOC flowing into the stream and BOD/COD, it was found that seasonal characteristics should be considered.

Simulation of dam inflow using a square grid and physically based distributed model (격자 기반의 물리적 분포형 모형을 이용한 댐 유입량 모의)

  • Choi, Yun Seok;Choi, Si Jung
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.4
    • /
    • pp.289-300
    • /
    • 2024
  • The purpose of this study is to evaluate the applicability of the GRM (Grid based rainfall-Runoff Model) to the continuous simulation by simulating the dam inflow. The GRM was previously developed for the simulation of rainfall-runoff events but has recently been improved to enable continuous simulation. The target watersheds are Chungju dam, Andong dam, Yongdam dam, and Sumjingang dam basins, and runoff models were constructed with the spatial resolution of 500 m × 500 m. The simulation period is 21 years (2001 to 2021). The simulation results were evaluated over the 17 year period (2005 to 2021), and were divided into three data periods: total duration, wet season (June to September), and dry season (October to May), and compared with the observed daily inflow of each dam. Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE), correlation coefficient (CC), and total volume error (VE) were used to evaluate the fitness of the simulation results. As a result of evaluating the simulated dam inflow, the observed data could be well reproduced in the total duration and wet season, and the dry season also showed good simulation results considering the uncertainty of low-flow data. As a result of the study, it was found that the continuous simulation technique of the GRM model was properly implemented and the model was sufficiently applicable to the simulation of dam inflow in this study.

Prediction of radioactivity releases for a Long-Term Station Blackout event in the VVER-1200 nuclear reactor of Bangladesh

  • Shafiqul Islam Faisal ;Md Shafiqul Islam;Md Abdul Malek Soner
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.696-706
    • /
    • 2023
  • Consequences of an anticipated Beyond Design Basis Accident (BDBA) Long-Term Station Blackout (LTSBO) event with complete loss of grid power in the VVER-1200 reactor of Rooppur Nuclear Power Plant (NPP) of Unit-1 are assessed using the RASCAL 4.3 code. This study estimated the released radionuclides, received public radiological dose, and ground surface concentration considering 3 accident scenarios of International Nuclear and Radiological Event Scale (INES) level 7 and two meteorological conditions. Atmospheric transport, dispersion, and deposition processes of released radionuclides are simulated using a straight-line trajectory Gaussian plume model for short distances and a Gaussian puff model for long distances. Total Effective Dose Equivalent (TEDE) to the public within 40 km and radionuclides contribution for three-dose pathways of inhalation, cloudshine, and groundshine owing to airborne releases are evaluated considering with and without passive safety Emergency Core Cooling System (ECCS) in dry (winter) and wet (monsoon) seasons. Source term and their release rates are varied with the functional duration of passive safety ECCS. In three accident scenarios, the TEDE of 10 mSv and above are confined to 8 km and 2 km for the wet and dry seasons, respectively in the downwind direction. The groundshine dose is the most dominating in the wet season while the inhalation dose is in the dry season. Total received doses and surface concentration in the wet season near the plant are higher than those in the dry season due to the deposition effect of rain on the radioactive substances.

Genetic Variation in Growth and Body Dimensions of Jersey and Limousin Cross Cattle. 2. Post-Weaning Dry and Wet Season Performance

  • Afolayan, R.A.;Pitchford, W.S.;Weatherly, A.W.;Bottema, C.D.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1378-1385
    • /
    • 2002
  • The importance of direct genetic, maternal, heterosis and epistatic effects were examined on post-weaning weight, height, length, girth, fat depth and muscle (ratio of stifle to hip width) with dry and wet season gains in these traits. The breeds used were two pure breeds (Jersey and Limousin), the Limousin${\times}$Jersey $F_1$, and two backcrosses ($F_1{\times}$Jersey dams and $F_1{\times}$Limousin dams). Direct genetic effects were large (p<0.001) for all traits except for length. Jersey maternal effects were large for weight, girth, fat depth and muscle in the post-weaning wet season gains which is an evidence of the impact of Jersey dam on progeny beyond weaning. There were large heterosis effects on fat depth and muscle relative to other traits. Epistatic effects were observed for post-weaning performance in weight, girth, fat depth and muscle. There are indications that there were different genetic effects for post-weaning compared to preweaning growth traits. Thus, it could be hypothesized from this study that different quantitative trait loci (QTL) affect early and late growth in Jersey and Limousin cross cattle breeds. The follow up work will examine the different chromosomal gene effects on pre- and post-weaning growth.

Water quality management strategy based on organic matter characteristics of streams and lakes in the Namhan River Watershed

  • Hyeonjong Youn;Chaewon Kang;Kyungik Gil
    • Membrane and Water Treatment
    • /
    • v.15 no.3
    • /
    • pp.99-106
    • /
    • 2024
  • This study developed an efficient management plan to improve the water quality by analyzing fluctuations in the ratio and amount of various organic substances in streams considering watershed characteristics and rainfall patterns. Monitoring was conducted on three streams and one lake over seven sessions during wet and dry seasons. Water quality indicators including total organic (TOC), refractory dissolved organic (RDOC), and particulate organic (POC) carbons were analyzed using high-temperature combustion oxidation. The three streams (Cheongmi, Yanghwa, and Bokha) displayed high TOC concentrations during the rainy season because the accumulated organic substances from the dry season were washed away by rainfall. By contrast, Paldang Lake exhibited a substantial decrease in TOC concentration due to dilution, which was influenced by watershed and rainfall characteristics. Across all streams and lakes, dissolved organic carbon (DOC) accounted for the highest proportion, at 77.5% of TOC, with RDOC making up 91% of DOC and 71% of TOC. Although POC contributed a small annual proportion to annual TOC, the concentration rapidly increased during late spring and early summer, with increases of 40.403%, 25.99%, and 27.388% in Cheongmi, Yanghwa, and Bokha, respectively. Continuous monitoring of RDOC is essential to identify seasonal fluctuations and changes due to rainfall events. Furthermore, intensive POC management during the rainy season, particularly in May and June, is potentially economical and efficient for water quality management.

Exploring the Complexities of Dams' Impact on Transboundary Flow: A Meta-Analysis of Climate and Basin Factors

  • Abubaker Omer;Hyungjun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.177-177
    • /
    • 2023
  • The impacts of dams on transboundary flow are complex and challenging to project and manage, given the potential moderating influence of a broad range of anthropogenic and natural factors. This study presents a global meta-analysis of 168 studies that examines the effect magnitude of dams on downstream seasonal, annual flow, and hydrological extremes risk on 39 hotspot transboundary river basins. The study also evaluates the impact of 13 factors, such as climate, basin characteristics, dams' design and types, level of transboundary cooperation, and socioeconomic indicators, on the heterogeneity of outcomes. The findings reveal that moderators significantly influence the impact of dams on downstream flow, leading to considerable heterogeneity in outcomes. Transboundary cooperation emerges as the key factor that determines the severity of dams' effect on both dry and wet season's flows at a significance level of 0.01 to 0.05, respectively. Specifically, the presence of water-supply and irrigation dams has a significant (0.01) moderating effect on dry-season flow across basins with high transboundary cooperation. In contrast, for wet-season flow, the basin's vulnerability to climate extremes is associated with a large negative effect size. The various moderators have varying degrees of influence on the heterogeneity of outcomes, with the aridity index, population density, GDP, and risk level of hydro-political tension being the most significant factors for dry-season flow, and the risk level of hydro-political tension and basin vulnerability to climate extremes being the most significant for wet-season flow. The results suggest that transboundary cooperation is crucial for managing the impacts of dams on downstream flow, and that various other factors, such as climate, basin characteristics, and socioeconomic indicators, have significant moderating effects on the outcomes. Thus, context-specific approaches are necessary when predicting and managing the impacts of dams on transboundary flow.

  • PDF