DOI QR코드

DOI QR Code

Water quality management strategy based on organic matter characteristics of streams and lakes in the Namhan River Watershed

  • Hyeonjong Youn (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Chaewon Kang (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Kyungik Gil (Department of Civil Engineering, Seoul National University of Science and Technology)
  • Received : 2024.05.08
  • Accepted : 2024.07.24
  • Published : 2024.07.25

Abstract

This study developed an efficient management plan to improve the water quality by analyzing fluctuations in the ratio and amount of various organic substances in streams considering watershed characteristics and rainfall patterns. Monitoring was conducted on three streams and one lake over seven sessions during wet and dry seasons. Water quality indicators including total organic (TOC), refractory dissolved organic (RDOC), and particulate organic (POC) carbons were analyzed using high-temperature combustion oxidation. The three streams (Cheongmi, Yanghwa, and Bokha) displayed high TOC concentrations during the rainy season because the accumulated organic substances from the dry season were washed away by rainfall. By contrast, Paldang Lake exhibited a substantial decrease in TOC concentration due to dilution, which was influenced by watershed and rainfall characteristics. Across all streams and lakes, dissolved organic carbon (DOC) accounted for the highest proportion, at 77.5% of TOC, with RDOC making up 91% of DOC and 71% of TOC. Although POC contributed a small annual proportion to annual TOC, the concentration rapidly increased during late spring and early summer, with increases of 40.403%, 25.99%, and 27.388% in Cheongmi, Yanghwa, and Bokha, respectively. Continuous monitoring of RDOC is essential to identify seasonal fluctuations and changes due to rainfall events. Furthermore, intensive POC management during the rainy season, particularly in May and June, is potentially economical and efficient for water quality management.

Keywords

Acknowledgement

This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).

References

  1. APHA, AWWA and WEF (1998), Standard Method for Examination of Water and Wastewater, Washington D.C., U.S.A.
  2. Arnell, N.W., Brown, R.P. and Reynard, N.S. (1990), Impact of Climatic Variability and Change on River Flow Regimes in the UK, Institute of Hydrology, Wallingford, U.K.
  3. Bass, A.M., Bird, M.I., Liddell, M.J. and Nelson, P.N. (2011), "Fluvial dynamics of dissolved and particulate organic carbon during periodic discharge events in a steep tropical rainforest catchment", Limnol. Oceanogr., 56(6), 2282-2292. https://doi.org/10.4319/lo.2011.56.6.2282
  4. Cauwet, G. (2002), "DOM in the coastal zone. Biogeochemistry of marine dissolved organic matter.
  5. Chen, S., Yoshitake, S., Iimura, Y., Asai, C. and Ohtsuka, T. (2017), "Dissolved organic carbon (DOC) input to the soil: DOC fluxes and their partitions during the growing season in a cool-temperate broad-leaved deciduous forest, central Japan", Ecol. Res., 32, 713-724. https://doi.org/10.1007/s11284-017-1488-6
  6. Choi, H., Ryu, I., Park, M., Song, Y., Yu, S. and Kim, S. (2020), "Analysis of the water circulation structure in the Paldang reservoir, South Korea", Appl. Sci., 10(19), 6822. https://doi.org/10.3390/app10196822
  7. Dhillon, G.S. and Inamdar, S. (2014), "Storm event patterns of particulate organic carbon (POC) for large storms and differences with dissolved organic carbon (DOC)", Biogeochemistry, 118, 61-81. https://doi.org/10.1007/s10533-013-9905-6
  8. Dunkerley, D. (2008), "Rain event properties in nature and in rainfall simulation experiments: A comparative review with recommendations for increasingly systematic study and reporting", Hydrol. Proc., 22(22), 4415-4435. https://doi.org/10.1002/hyp.7045
  9. Eimers, M.C., Buttle, J. and Watmough, S.A. (2008), "Influence of seasonal changes in runoff and extreme events on dissolved organic carbon trends in wetland-and upland-draining streams. Canadian J. Fish. Aqua. Sci., 65(5), 796-808. https://doi.org/10.1139/f07-194
  10. Fan, X., Cui, B., Zhang, K., Zhang, Z. and Shao, H. (2012), "Water quality management based on division of dry and wet seasons in Pearl River Delta, China", Clean Soil, Air, Water, 40(4), 381-393. https://doi.org/10.1002/clen.201100123
  11. Fedora, M.A. and Beschta, R.L. (1989), "Storm runoff simulation using an antecedent precipitation index (API) model", J. Hydrol., 112(1-2), 121-133. https://doi.org/10.1016/0022-1694(89)90184-4
  12. Gil, K., Kim, T. and Jung, M.S. (2011), "Runoff characteristics of refractory organic matters from South-Han river watershed during rainfall event and dry season", J. Korean Soc. Water Environ., 27(3), 306-313. https://doi.org/10.15681/KSWE.2011.27.3.7
  13. Golladay, S.W., Watt, K., Entrekin, S. and Battle, J. (2000), "Hydrologic and geomorphic controls on suspended particulate organic matter concentration and transport in Ichawaynochaway Creek, Georgia, USA", Archiv fur Hydrobiologie, 149(4), 655-678.
  14. Gomes, P.I. and Wai, O.W. (2015), "In-stream physical heterogeneity, rainfall aided flushing, and discharge on stream water quality", Water Environ. Res., 87(8), 758-768. https://doi.org/10.2175/106143015X14362865225997
  15. Hansell, D.A. and Carlson, C.A. (2013), "Localized refractory dissolved organic carbon sinks in the deep ocean", Global Biogeochem. Cy., 27(3), 705-710. https://doi.org/10.1002/gbc.20067
  16. Hayakawa, K., Hirose, Y., Okamoto, T., Hichiri, S., Ohara, T., Noto, K. and Inoue, S. (2019), "Modification of analytical procedure for determining total organic carbon in lake waters using a TOC analyzer", J. Japan Soc. Water Environ., 42(6), 259-267. https://doi.org/10.2965/jswe.42.259
  17. Im, J. and Gil, K. (2023), "Characteristics of micro-plastics in stormwater sediment basin: Case study of J wetland", Membr. Water Treat., 14(4), 147. https://doi.org/10.12989/mwt.2023.14.4.147
  18. Jeon, J., Choi, H., Shin, D. and Kim, L.H. (2019), "Installation and operation of automatic nonpoint pollutant source measurement system for cost-effective monitoring", Membr. Water Treat., 10(1), 99-104. https://doi.org/10.12989/mwt.2019.10.1.099
  19. Joannis, C., Hannouche, A. and Chebbo, G. (2015), "An assessment of the respective contributions of flow-rate and concentration variations to mass discharge variations at the outlets of two combined catchments during rain events", Urban Water J., 12(8), 653-659. https://doi.org/10.1080/1573062X.2014.939662
  20. Kang, C. and Gil, K. (2023), "Constructing an Internet of things wetland monitoring device and a real-time wetland monitoring system", Membr. Water Treat., 14(4), 155. https://doi.org/10.12989/mwt.2023.14.4.155
  21. Kim, D., Kim, J., Joo, H., Han, D. and Kim, H.S. (2019), "Future water quality analysis of the Anseongcheon River basin, Korea under climate change", Membr. Water Treat., 10(1), 1-11. https://doi.org/10.12989/mwt.2019.10.1.001
  22. Kim, D.W., Jang, M.J. and Han, I.S. (2014), "Determination of focused control pollutant source by analysis of pollutant delivery characteristics in unit watershed upper Paldang lake", J. Korean Soc. Environ. Eng., 36(5), 367-377. https://doi.org/10.4491/KSEE.2014.36.5.367
  23. Kim, J.K., Lee, S.H., Bang, H.H. and Hwang, S.O. (2009), "Characteristics of algae occurrence in Lake Paldang", J. Korean Soc. Environ. Eng., 31(5), 325-331.
  24. Kim, T. and Gil, K. (2011), "Runoff characteristics of refractory organic matters from Kyongan river watershed during rainfall event and dry season", J. Korean Soc. Water Environ., 27(4), 397-404. https://doi.org/10.15681/KSWE.2011.27.4.2
  25. Ko, J.W., Baek, H.J. and Kwon, W.T. (2005), "The characteristics of precipitation and regionalization during rainy season in Korea", J. Korean Meteorol. Soc., 41, 101-114.
  26. Kozak, C., Fernandes, C.V.S., Braga, S.M., do Prado, L.L., Froehner, S. and Hilgert, S. (2019), "Water quality dynamic during rainfall episodes: integrated approach to assess diffuse pollution using automatic sampling", Environ. Monitor. Assess., 191, 1-13. https://doi.org/10.1007/s10661-019-7537-6
  27. Lawacz, W. (1977), "Dissolved and particulate organic carbon (DOC and POC) in ecological studies", Acta Hydroch. Hydrob., 5(4), 363-367. https://doi.org/10.1002/aheh.19770050405
  28. Letson, D. (2019), Point/Nonpoint Source Pollution Reduction Trading: An Interpretive Survey, in The Economics of Water Quality, Routledge, London, U.K.
  29. Li, F., Yuasa, A., Muraki, Y. and Matsui, Y. (2005), "Impacts of a heavy storm of rain upon dissolved and particulate organic C, N and P in the main river of a vegetation-rich basin area in Japan", Sci. Total Environ., 345(1-3), 99-113. https://doi.org/10.1016/j.scitotenv.2004.11.004
  30. Lin, Y.F., Jing, S.R., Lee, D.Y., Chang, Y.F. and Sui, H.Y. (2010), "Constructed wetlands for water pollution management of aquaculture farms conducting earthen pond culture", Water Environ. Res., 82(8), 759-768. https://doi.org/10.2175/106143010X12609736966685
  31. MacQuarrie, K.T.B. and Sudicky, E.A. (1990), "Simulation of biodegradable organic contaminants in groundwater: 2. Plume behavior in uniform and random flow fields", Water Resour. Res., 26(2), 223-239. https://doi.org/10.1029/WR026i002p00223
  32. Nguyen, H.V.M. and Hur, J. (2011), "Tracing the sources of refractory dissolved organic matter in a large artificial lake using multiple analytical tools", Chemosphere, 85(5), 782-789. ttps://doi.org/10.1016/j.chemosphere.2011.06.068
  33. Park, J.H., Kong, D.S. and Min, K.S. (2008), "Delivered pollutant loads of point and nonpoint source on the upper watershed of Lake Paldang-case study of the watershed of Namhan River and Gyeongan Stream", J. Korean Soc. Water Environ., 24(6), 750-757.
  34. Park, J.K., Kim, E.S., Kim, K.T., Cho, S.R. and Park, Y.C. (2006), "Organic carbon behavior and distribution in the Mankyoung River Estuary", J. Korean Soc. Mar. Environ. Eng, 9(3), 131-140.
  35. Pruss, A. (2015), "Removal of organic matter from surface water during coagulation with sludge flotation and rapid filtration-a full-scale technological investigation", Water Sci. Technol., 71(4), 645-652. https://doi.org/10.2166/wst.2014.514
  36. Salim, I., Paule-Mercado, M.C., Sajjad, R.U., Memon, S.A., Lee, B.Y., Sukhbaatar, C. and Lee, C.H. (2019), "Trend analysis of rainfall characteristics and its impact on stormwater runoff quality from urban and agricultural catchment", Membr. Water Treat., 10(1), 45-55. https://doi.org/10.12989/mwt.2019.10.1.047
  37. Servais, P., Garnier, J., Demarteau, N., Brion, N. and Billen, G. (1999), "Supply of organic matter and bacteria to aquatic ecosystems through waste water effluents", Water Res., 33(16), 3521-3531. https://doi.org/10.1016/S0043-1354(99)00056-1
  38. Steinbuchel, A. (2005), "Non-biodegradable biopolymers from renewable resources: Perspectives and impacts", Curr. Opin. Biotechnol., 16(6), 607-613. https://doi.org/10.1016/j.copbio.2005.10.011
  39. Thomas, L.M. (1985), "Management of nonpoint-source pollution: What priority?", J. Soil Water Conserv., 40(1), 8-8.
  40. Wagner, P.D., Fiener, P., Wilken, F., Kumar, S. and Schneider, K. (2012), "Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions", J. Hydrol., 464, 388-400. https://doi.org/10.1016/j.jhydrol.2012.07.026
  41. Xuqing, L., Yayun, L., Chao, L., Li, Z., Hao, Y., Chao, F. and Ashraf, M.A. (2016), "Identification of residual non-biodegradable organic compounds in wastewater effluent after two-stage biochemical treatment", Open Life Sci., 11(1), 396- 401. https://doi.org/10.1515/biol-2016-0053