• Title/Summary/Keyword: wet recovery process

Search Result 52, Processing Time 0.02 seconds

Solid-Phase Refolding of Inclusion Body Protein in Packed Bed Adsorption and Expanded Bed Adsorption Chromatography (Packed Bed Adsorption과 Expanded Bed Adsorption 크로마토그래피를 이용한 내포체 단백질의 고체상 재접힘)

  • 최원찬;김민영;서창우;이은규
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.500-505
    • /
    • 2003
  • ‘LK (lipoprotein kringle) 68’is a polypeptide of a modified ansiostatin consisting of three kringle structures that might be clinically useful as a potential cancer therapeutics. It can be produced by overexpressing it as inclusion body in recombinant E. coli. In this study, solid-phase refolding processes using packed bed adsorption (PBA) and expanded bed adsorption (EBA) column were carried out to compare their refolding yields with that of the conventional, solution-phase refolding process, For the solution-phase and the PBA-mediated processes employing Q-Sepharose, washed inclusion body was used as the starting material, whereas both washed inclusion body and E. coli homogenate were used for the EBA-mediated process employing streamline DEAE. On the final recovery LK68 per unit mass of wet cell basis, the EBA- and PBA-mediated processes showed about 2.7- and 1.5-fold higher yields, respectively, than the solution-phase refolding method. The solid-phase refolded LK68 demonstrated the same Iysine binding bioactivity and the retention time in the RP-and SEC-HPLC as those of the native protein.

Recovery of Valuable Metals from the Desulfurizing Spent Catalyst Used in Domestic Petrochemical Industry (국내 석유공장의 탈황 폐촉매로부터 유가금속의 회수에 관한 연구)

  • 김종화;양종규
    • Resources Recycling
    • /
    • v.4 no.3
    • /
    • pp.2-9
    • /
    • 1995
  • The rccoverg and separation pracess of nikcl, vanadium and molybdenum from spent dcsulfilrizing catalyst ofpetrochemical rndustries was studied. Tnis process was canied out wet process which is consist of roasting, ammonialeaching and solve111 exDaction techniqcs. The metal ions of NI, V and Mo as vduable compollents were treated byroasting them a1 low lernperatuc, 400$^{\circ}$C in first dep, and then dlssah'ed nu1 at 80$^{\circ}$C wlth ammonium cabonate mlulion.Aftcr cooling them a1 room tempertaure, vanadium wa rccavered from mathcr iiquur in thc f n m of precipitate, sodiumvanadales The Secand slep, roasting the catalyst which is added sodium carbonate ul IOOO"C, was employed. Leachingwith distilled ~ a l e rga ve a iwo phase resultant, solutio~c~a ntaning Ni, V and Mo and solid residue containing sibca,alurmniu~n and iron. A solvcnt exlclction technique uslng vvriuus extractanls, MSP-8, TOIUC, LIX64Pi was eflecnve farthc extraclion and scparation ol thrcc mcfals from thc ammonical 11qou1 thc ammonical 11qou1.

  • PDF

A study on recovery of Platinum Group Metals(PGMs) from spent automobile catalyst by melting technology (용융기술(熔融技術)을 이용(利用)한 자동차폐촉매(自動車廢觸媒)에서의 백금족(白金族) 금속(金屬) 회수(回收) 연구(硏究))

  • Park, Hyun-Seo
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.74-81
    • /
    • 2011
  • The dry method and wet method are currently used for the recovery of platinum group metals (Pt, Rh, Pd) contained in spent automobile catalysts. The study herein aims to identify the melting condition and optimum collector metal in accordance with a comparison of each concentration change in melting waste catalysts, using Fe and Cu in a basic experiment to recover waste catalysts through application of the dry melting method. As a summarized result of the experiment herein, it was determined to be more advantageous to use Fe as a parent material rather than Cu from the aspect of recollection rate, and the concentration change rate of platinum group metals within slag was greatly enhanced at $1,600^{\circ}C$ melting condition rather than at $1,500^{\circ}C$ in terms of melting processing temperature. The mean concentration of platinum group metals - Rh, Pd and Pt - within slag after a melting process at $1,600^{\circ}C$ were 6.21 ppm, 5.98 ppm and 6.97 ppm. The Rh and Pd were 50.58% and 55.31% respectively greater than the concentration change rate of platinum group metals in slag at a melting temperature of $1,500^{\circ}C$. However, since the initial concentration of Pt within the waste catalysts was 12.9 ppm, is relatively low, it was difficult to compare concentration change rates after the melting process.

Evaluation of Rhizofiltration for Uranium Removal with Calculation of the Removal Capacity of Raphanus sativus L. (무순(Raphanus sativus L.)의 제거능 계산에 의한 뿌리여과법의 우라늄 제거 가능성 평가)

  • Han, Yikyeong;Lee, Minhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.43-52
    • /
    • 2015
  • The uranium removal capacity of radish sprouts (Raphanus sativus L.) in groundwater was calculated on the basis of the amount of uranium accumulated in the radish sprouts rather than the concentration in solution, of which process was very limited in previous studies. Continuous rhizofiltration clean-up system was designed to investigate the feasibility of radish sprouts, applying for uranium contaminated groundwater (U concentration: 110 μg/L) taken at Bugogdong, Busan. Six acrylic boxes (10 cm × 30 cm × 10 cm) were connected in a direct series for the continuous rhizofiltration system and 200 g of radish sprouts cultivars was placed in each box. The groundwater was flushed through the system for 48 hours at the constant rate of 5 mL/min. The rhizofiltration system was operated in the phytotron, of which conditions were at 25℃ temperature, 70% of relative humidity, 4,000 Lux illumination (16 hours/day) and 600 mg/L of CO2 concentration. While 14.4 L of contaminated groundwater was treated, the uranium removal efficiency of the radish sprouts (1,200 g in wet weight) was 77.2% and their removal capacities ranged at 152.1 μg/g-239.7 μg/g (the average: 210.8 μg/g), suggesting that the radish sprouts belong to the group of hyper-accumulation species. After the experiment, the sum of U amounts accumulated in radish sprouts and remained in groundwater was 1,472.2 μg and the uranium recovery ratio of this rhizofiltration experiment was 92.9%. From the results, it was investigated that the radish sprouts can remove large amounts of uranium from contaminated groundwater in a short time (few days) because the fast growth rate and the high U accumulation adsorption capacity.

Removal of PVC from Mixed Plastic Waste by Combination of Air Classification and Centrifugal Process (풍력(風力) 및 습식비중(濕式比重) 선별(選別)에 의한 혼합(混合)폐플라스틱 종말품(終末品)으로부터 PVC 제거(除去)에 관한 연구(硏究))

  • Choi, Woo-Zin;Yoo, Jae-Myung
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.71-76
    • /
    • 2007
  • The mixed plastic waste generated from households after hand-picking and/or mechanical sorting processes amounts to 1,750,000 ton in 2006, and most of these waste are finally end up with landfill and/or incineration due to the lacks of separation technologies and economical reasons. The mixed plastic wastes can not be used as raw materials for chemical and/or thermal recycling processes because of their high content of PVC(upto 4.0 wt.%). In the present research, gravity separation system has been developed to remove PVC from the mixed plastic waste and to recover the PO-type plastics. This system mainly consists of air classification, magnetic separation, one-step crushing, feeding system at fixed rate and wet-type gravity separation system. The gravity system based on centrifugal separation has been developed at capacity of 0.5 ton/h and it consists of mixing, precleaning, separation, dewatering, recovery system and wastewater treatment system, etc. The main objective of this process is to achieve high separation efficiency of polyolefins with less than 0.3 wt.% PVC content and less than 10% moisture content in the final products. In addition, a crushing unit of with 8 rotor system is also developed to improve the crushing efficiency of soft-type plastics. The system with a capacity of 1.0 ton/h is developed and operational results are presented.

Interfacial Adhesion and Reliability between Epoxy Resin and Polyimide for Flexible Printed Circuit Board (연성인쇄회로기판의 에폭시수지와 폴리이미드 사이의 계면접착력 및 신뢰성 평가)

  • Kim, Jeong-Kyu;Son, Kirak;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.75-81
    • /
    • 2017
  • The effects of KOH pretreatment and annealing conditions on the interfacial adhesion and the reliability between epoxy resin and polyimide substrate in the flexible printed circuit board were quantitatively evaluated using $180^{\circ}$ peel test. The initial peel strength of the polyimide without the KOH treatment was 29.4 g/mm and decreased to 10.5 g/mm after 100hrs at $85^{\circ}C/85%$ R.H. temperature/humidity treatment. In case of the polyimide with annealing after KOH treatment, initial peel strength was 29.6 g/mm and then maintained around 27.5 g/mm after $85^{\circ}C/85%$ R.H. temperature/humidity treatment. Systematic X-ray photoelectron spectroscopy analysis results showed that the peel strength after optimum annealing after KOH treatment was maintained high not only due to effective recovery of the polyimide damage by the polyimide surface treatment process, but also effective removal of metallic ions and impurities during various wet process.

$H_{2}S$ Removal and $CO_{2}/CH_{4}$ Separation of Ternary Mixtures Using Polyimide Hollow Fiber Membrane (폴리이미드 중공사막을 이용한 혼합기체로부터 $H_{2}S$ 제거 및 $CO_{2}/CH_{4}$ 분리에 관한 연구)

  • Park, Bo-Ryoung;Kim, Dae-Hoon;Jo, Hang-Dae;Seo, Yong-Seog;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.250-255
    • /
    • 2011
  • In this study, by using the polymeric membrane separation process, the $CO_{2}/CH_{4}$ separation and $H_{2}S$ removal from biogas were performed in order to $CH_{4}$ purification and enrichment for the fuel cell energy source application. Fibers were spun by dry/wet phase inversion method. The module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy(SEM) studies showed that the produced fibers typically had an asymmetric structure; a dense top layer supported by a porous, sponge substructure. The permeance of $CO_{2}$ and $CO_{2}/CH_{4}$ selectivity increased with pressure and temperature. Mixture gas with increasing pressure and temperature, removal efficiency of the $CO_{2}$ and $H_{2}S$ were decreased while concentration of $CH_{4}$ was increased up to 100%. When retentate flow rate was increased with the decreasing of pressure and temperature the $CH_{4}$ recovery ratio in retentate side was increased while the $CH_{4}$ purity in retentate side was decreased.

A Study on Process Optimization for CSOs Application of Horizontal Flow Filtration Technology (수평흐름식 여과기술의 CSOs 적용을 위한 공정 최적화 연구)

  • Kim, Jae-Hak;Yang, Jeong-Ha;Lee, Young-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.56-63
    • /
    • 2018
  • The management of Combined Sewer Overflows(CSOs) and Separated Sewer Overflows(SSOs) discharge directly to the effluent system in an untreated state, which occurs when the facility capacity is exceeded due to heavy rain, has become an important issue in recent years as the heavy rain becomes a regular phenomenon. Despite the continuous development of filtration technology, targeting densely populated urban areas, CSOs are rarely applied. Therefore, this study was carried out to optimize the process to apply CSOs in a pilot-scale horizontal flow filtration system with a rope-type synthetic fiber. The research was carried out in two steps: a preliminary study using artificial samples and a field study using sewage. In the preliminary study using an artificial sample, head loss of the filter media itself was analyzed to be approximately 1.1cm, and the head loss was increased by approximately 0.1cm as the linear velocity was increased by 10m/hr. In addition, the SS removal efficiency was stable at 81.4%, the filtration duration was maintained for more than 6 hours, and the average recovery rate of 98% was obtained by air backwashing only. In the on-site evaluation using sewage, the filtration duration was approximately 2 hours and the average removal efficiency of 83.9% was obtained when belt screen (over 450 mesh) was applied as a pre-treatment process to prevent the premature clogging of filter media. To apply the filtration process to CSOs and SSOs, it was concluded that the combination with the pre-treatment process was important to reinforce the hydraulic dimension for the stable maintain of operation period, rather than efficiency. Compared to the dry season, the quality of incoming sewage was lower in the rainy season, which was attributed to the characteristics of the drainage area with higher sanitary sewerage. In addition, the difference in removal efficiency according to the influent quality of the wet season and dry season was small.

Size Distribution and Physicochemical Characteristics of MSW for Design of Its Mechanical Biological Treatment Process (폐기물전처리(MBT)시설 설계를 위한 생활폐기물의 입도분포 및 물리화학적 특성에 관한 연구)

  • Park, Jin-Kyu;Song, Sang-Hoon;Jeong, Sae-Rom;Jung, Min-Soo;Lee, Nam-Hoon;Lee, Byoung-Chul
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • There has been a recent trend in Korea that treatments for combustible wastes among municipal solid waste (MSW) by those methods, such as incineration and landfill are restricted as much as possible and Mechanical Biological Treatment (MBT) are encouraged actively in order to promote resource recovery. To build and operate properly these facilities, the physicochemical characteristics of MSW should be analyzed precisely beforehand. In particular, designing a crusher or separator properly which is the main process in MBT facilities of MSW. require the information on the size distribution characteristics of MSW, but they are nor sufficient in the qualities and quantities yet as of now. Accordingly, this study aims to evaluate size distribution characteristics of MSW and its physicochemical characteristics by size. The samples of MSW were collected from detached dwelling area, apartment area, business area, and commercial area of A city in Korea. According to the result of analysis, paper records 29.78~60.02% by wet weight basis, so it was the most regardless of the regions where the wastes were generated. And in terms of element analysis, Carbon(C) was 34.77~44.39%, the largest friction, and Oxygen(O) was the next occupying 19.46~33.71%. As indices of RDFs, Chlorine(Cl) was 0.39~0.83%, so it was less than the standard, 2.0%(by dry weight basis); moreover, Sulfur(S) did not exceed the standard, 0.6%, either. In the size distribution of MSW, waste fraction ranging 50~80mm in diameter was the most in combustible waste while 30~50mm was in incombustible waste.

  • PDF

Optimization of Characteristic Change due to Differences in the Electrode Mixing Method (전극 혼합 방식의 차이로 인한 특성 변화 최적화)

  • Jeong-Tae Kim;Carlos Tafara Mpupuni;Beom-Hui Lee;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • The cathode, which is one of the four major components of a lithium secondary battery, is an important component responsible for the energy density of the battery. The mixing process of active material, conductive material, and polymer binder is very essential in the commonly used wet manufacturing process of the cathode. However, in the case of mixing conditions of the cathode, since there is no systematic method, in most cases, differences in performance occur depending on the manufacturer. Therefore, LiMn2O4 (LMO) cathodes were prepared using a commonly used THINKY mixer and homogenizer to optimize the mixing method in the cathode slurry preparation step, and their characteristics were compared. Each mixing condition was performed at 2000 RPM and 7 min, and to determine only the difference in the mixing method during the manufacture of the cathode other experiment conditions (mixing time, material input order, etc.) were kept constant. Among the manufactured THINKY mixer LMO (TLMO) and homogenizer LMO (HLMO), HLMO has more uniform particle dispersion than TLMO, and thus shows higher adhesive strength. Also, the result of the electrochemical evaluation reveals that HLMO cathode showed improved performance with a more stable life cycle compared to TLMO. The initial discharge capacity retention rate of HLMO at 69 cycles was 88%, which is about 4.4 times higher than that of TLMO, and in the case of rate capability, HLMO exhibited a better capacity retention even at high C-rates of 10, 15, and 20 C and the capacity recovery at 1 C was higher than that of TLMO. It's postulated that the use of a homogenizer improves the characteristics of the slurry containing the active material, the conductive material, and the polymer binder creating an electrically conductive network formed by uniformly dispersing the conductive material suppressing its strong electrostatic properties thus avoiding aggregation. As a result, surface contact between the active material and the conductive material increases, electrons move more smoothly, changes in lattice volume during charging and discharging are more reversible and contact resistance between the active material and the conductive material is suppressed.