• Title/Summary/Keyword: wet carbonation

Search Result 26, Processing Time 0.029 seconds

A Fundamental Study on the Steel Corrosion Due to Carbonation of Concrete (콘크리트의 중성화로 인한 철근의 부식에 관한 기초적 연구)

  • 이창수;윤인석;최성기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.203-206
    • /
    • 1998
  • In reinforced concrete carbonation of concrete leads to depassivation of the reinforcement, and hence to initiation of corrosion. As a result of carbonation accelerating experiment with using effect of wet-dry cycle and 15% concentration of CO ₂, the carbonation rate shows very distinct difference according to W/C ratio. OPC-40 estimated no carbonation depth, whereas OPC-60 estimated rapidly the carbonation rate. The comparative analysis of the carbonation rate accelerating depends on different kinds of cement shows fastest FAC-20. Also, highly W/C ratio's concrete shows low half-cell potential value and fast corrosion rate. During period for 14 weeks. corrosion rate was not severe. So, it can be concluded that only carbonation attack on concrete doesn't severly deteriorated except very poor qualitified concrete.

  • PDF

Influence of Painting Materials based on Wasted Oil and Applying Timing on Carbonation and Chloride Resistances of High Volume SCM Concrete (폐유지류를 중심으로 한 도포제 종류 및 도포시기 변화가 혼화재 다량치환 콘크리트의 탄산화 및 염해저항성에 미치는 영향)

  • Han, Cheon-Goo;Choi, Young-Doo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • In this research, the influence of painting materials and applying timing on carbonation and chloride resistances of high volume SCMs concrete was evaluated. As a durability improving method, comparative tests were conducted with painting materials of ERCO (emulsified refined cooking oil), RCO (refined cooking oil), WR (water repellent agent), and ERCO + WR and with painting timings of right after demolding, and 28 days after the wet curing. From the experiment results, in the case of carbonation and chloride resistance, the carbonation depth and chloride penetration depth were decreased when the painting materials were applied in 28 days of wet curing. Additionally, for painting materials, with the order of ERCO, RCO, ERCO+WR, and WR, the carbonation and chloride penentration was delayed. Hence it is considered that ERCO shows the most favorable performance of resistance against carbonation and chloride penetration.

Study on Permeability Characteristics of Cement Mortar under Carbonation (탄산화 진행에 따른 시멘트 모르타르의 투수특성에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.185-188
    • /
    • 2006
  • During the carbonation process in concrete, the rate of carbonation depends on porosity and moisture content of the concrete. For underground reinforced concrete structures, the interior concrete surface may be exposed to carbonation and the exterior concrete surface exposed to moisture due to wet soil or underground water. In this study, the permeability coefficients in mortar partially carbonated is derived as a function of carbonation depth and porosity of mortar by applying the so-called micro pore structure formation model (MPSFM) which was developed for the modeling of early-aged concrete. The permeability coefficient obtained from the micro-level modeling of carbonated mortar is verified with the results of accelerated carbonation test and water penetration test in cement mortar.

  • PDF

Optimization of Carbonated Cellulose Fiber-Cement Composites

  • Won, Jong-Pil;Bae, Dong-In
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.79-89
    • /
    • 2000
  • This research developed an accelerated curing processe for cellulose fiber reinforced cement composites using vigorous reaction between carbon dioxide and cement paste. A wet-processed cellulose fiber reinforced cement system was considered. Carbonation curing was used to complement conventional accelerated curing. The parametric study followed by optimization investigation indicated that the carbonation curing can enhance the productivity and energy efficiency of manufacturing cellulose fiber reinforced cement composites. This also adds environmental benefits to the technical and economical advantages of the technology.

  • PDF

Fundamental Study on the CO2 fixation method using the Cement-saturated solution (시멘트 수용액을 이용한 CO2 고정화 방안에 관한 기초적 연구)

  • Kwack, Jae-Seok;Kang, Chang-Soo;Ahn, Hee-Sung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.41-42
    • /
    • 2011
  • The purpose of this study is not only fixation of carbon dioxide using the cement-saturated solution by wet carbonating reaction but also evaluate the possibility of storage technology of Carbon dioxide. wet carbonation is reaction of CO2 injection by CO2 reactor. As a result of experiment, the carbon dioxide is fixed, and high-purity Calcium Carbonate is eluted.

  • PDF

Fundamental Study on the CO2 gas Fixation Method using the Cement-Paste Solution's Calcium ion (시멘트 페이스트 수용액의 칼슘 이온을 이용한 CO2 가스 고정화에 관한 기초적 연구)

  • Kwack, Jae-Seok;Kang, Chang-Soo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.71-72
    • /
    • 2012
  • The purpose of this study is not only fixation of carbon dioxide using the cement-Paste solution's calcium ion by wet carbonating reaction but also quantitatively evaluate the possibility of storage technology of Carbon dioxide. wet carbonation is reaction of CO2 injection by CO2 reactor. As a result of experiment, the carbon dioxide is fixed, and high-purity Calcium Carbonate is eluted.

  • PDF

Evaluation of Rebar Corrosion Due to Carbonation of Concrete (콘크리트의 중성화로 인한 철근의 부식 정도 평가)

  • 이창수;설진성;윤인석
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.21-30
    • /
    • 2000
  • Recently, reinforced concrete structures exposed to severe enviroment are increased in metropolitan area. The acid rain and CO2 penetrated towad rebar, thus rebar corrosion occurred. The corrosion of rebar in concrete is, as in most corrosion processes, an electrochemical nature. The corrosion may severely affect on durability and service life of such a concrete structures. This study was performed for the purpose of acquiring data about corrosion condition and considering a countermeasure to prevent rebar from corroding due to carbonation of concrete. An accelerated car bonation testing procedure was applied to measure the evolution of carbonation and rebar corrosion with time for various water-binder ratios and cement types.

A Study on the Fixed amount of CO2 and the estimation of production on CaCO3 of Waste Concrete Powder using the Ca(OH)2 (Ca(OH)2를 이용한 폐콘크리트 미분말의 CO2 고정량 및 CaCO3 생성량 추정에 관한 연구)

  • Ahn, Hee-Sung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.117-118
    • /
    • 2011
  • South Korea is a ninth greenhouse gas emission nation in the world(2007) and is certainly to perform a duty to conduct reduction role by the Kyoto Protocol in 2013. waste concrete produced in the country is 45 million tons per year and these two issues are being came to the fore as major problems of society. However, if it utilizes wet carbonation system carbon using carbon dioxide and waste concrete as raw material it can expect effect of environmental protection and resource recycling. Furthermore, it can exploit another industry production.

  • PDF

An experimental study on preparation of precipitated calcium carbonate using Ca component dissolution characteristics and liquid carbonation by the Industrial byproducts (산업부산물의 Ca 성분 용출 특성 및 액상탄산화 반응을 이용한 침강성 탄산칼슘 제조에 관한 실험적 연구)

  • Lim, Yun-Hui;Lee, Ju-Yeol;Shin, Jae-Ran;Choi, Chang-Sik;Hong, Bum-Ui;Kang, Ho Jong;Park, Byung Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.116-126
    • /
    • 2015
  • The present study utilized a shuttle mechanism of wet chemical absorption using MEA. In addition, industrial by-products containing a large amount of inorganic alkali substances were utilized for wet carbonization process. Chemical pretreatment of industrial by-products extracted calcium ions. ICP result of calcium ion was obtained up to 17,900 ppm(17.9%) by acidic substance. And also, In this work, 94% of recovery rate was obtained using wet MEA absorption process from $CO_2$ flow at the ambient condition. Through the liquid carbonation process, a sludge was fixed with rate of 0.175 mg of $CO_2$ per mg of sludge. It was found from XRD results that the structure of final product was composed of a calcite structure which is general structure of $CaCO_3$.

Strength and Carbonation Characteristics in OPC Concrete under Long-Term Exposure Conditions in Various Sea Environments (다양한 해양환경에 장기 노출된 OPC 콘크리트의 강도 및 탄산화 특성 )

  • Hyeon-Woo Lee;Geum-Chae Shin;Seung-Jun Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.53-60
    • /
    • 2024
  • Compressive strength in concrete has many affecting parameters and varies with exposure conditions. Although the concrete has same mix proportions, its properties are different with exposure conditions, and sea-environment can be classified into three groups such as tidal, atmospheric, and sea submerged region particularly. In this study, compressive strength was evaluated on 7-year-cured concrete and the results from previous equations (KDS, ACI, CEB, and JSCE) were compared with them. Furthermore the strength and carbonation progress were evaluated on concrete cured for 7 years exposed to three different sea environment. Three levels of w/c (water to cement) ratio (0.37, 0.42, and 0.47) and three different exposure conditions (tidal, atmospheric, and submerged) were considered. The results from wet-cured condition are all higher than those from the previously proposed equations, and the results from different sea exposure conditions (tidal, atmospheric, and submerged region) were lower than those from wet-cured condition. A reduction of strength was evaluated with increasing w/c ratio and the minimum strength was evaluated in the sea-submerged conditions. Several experimental constants applicable to the previous equations were obtained from regression analysis since the strength change with w/c ratios were not considered in those equations. Regarding carbonation depth with different exposure conditions, higher carbonation depth clearly was observed with increasing w/c ratios, and evaluated in the order of atmospheric, submerged, and tidal region. Considerable carbonation depth was observed in submerged and tidal region due to sulfate ion and dissloved carbon dioxide as well.