• Title/Summary/Keyword: well diffusion

Search Result 1,362, Processing Time 0.029 seconds

Coconut husk as a biosorbent for methylene blue removal and its kinetics study

  • Dave, Shailesh R.;Dave, Vaishali A.;Tipre, Devayani R.
    • Advances in environmental research
    • /
    • v.1 no.3
    • /
    • pp.223-236
    • /
    • 2012
  • Biosorption of methylene blue (MB) from aqueous solution was studied with respect to the point of zero charge of coconut husk, dye concentration, particle size, pH, temperature, as well as adsorbent and NaCl concentration using coconut husk biomass. Amongst Langmuir and Freundlich adsorption isotherms studied, Langmuir adsorption isotherm showed better agreement. Pseudo second order kinetics model was found to be more suitable for data presentation as compared to pseudo first order kinetics model. Also, involvement of diffusion process was studied using intraparticle diffusion, external mass transfer and Boyd kinetic model. Involvement of intraparticle diffusion model was found to be more relevant (prominent) as compared to external mass transfer (in) for methylene blue biosorption by the coconut husk. Moreover, thermodynamic properties of MB biosorption by coconut husk were studied. Desorption of methylene blue from biomass was studied with different desorbing agents, and the highest desorption achieved was as low as 7.18% with acetone, which indicate stable immobilization. Under the experimental conditions MB sorption was not significantly affected by pH, temperature and adsorbent concentration but low sorption was observed at higher NaCl concentrations.

Structure and Characteristics of Diffusion Flaame behind a Bluff-body in a Divergent Flow(II) (확대유로내의 Bluff-Body 후류확산화염의 구조 및 특성 2)

  • ;;Lee, Joong Sung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.2981-2994
    • /
    • 1995
  • In order to elucidate the effects of positive pressure gradient on flame properties, structure and stabilization, an experimental study is made on turbulent diffusion flame stabilized by a circular cylinder in a divergent duct flow. A commercial grade gaseous propane is injected from two slits on the rod as fuel. In this paper, stabilization, characteristics and flame structure are examined by varying the divergent angle of duct. Temperature, ion current and Schlieren photographs were measured. It is found that critical divergent angle is expected to be about 8 ~ 12 degree through blow-off velocity pattern to divergent angle and the positive pressure gradient influences the flame temperature, intensity of ion current and eddy structure behind the rod. With the increase of divergent angle, typical temperature of recirculation zone is low but intensity of ion current is high in shear layer behind rod. Energy distributions of fluctuating temperature and ion current signals turn up low frequency corresponding to large scale eddies but high frequency corresponding to small scale eddies as well as low with the increase of divergent angle. Therefore the flame structure becomes a typical distributed-reacting flame.

Prediction of RC structure service life from field long term chloride diffusion

  • Safehian, Majid;Ramezanianpour, Ali Akbar
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.589-606
    • /
    • 2015
  • It is well-documented that the major deterioration of coastal RC structures is chloride-induced corrosion. Therefore, regional investigations are necessary for durability based design and evaluation of the proposed service life prdiction models. In this paper, four reinforced concrete jetties exposed to severe marine environment were monitored to assess the long term chloride penetration at 6 months to 96 months. Also, some accelerated durability tests were performed on standard samples in laboratory. As a result, two time-dependent equations are proposed for basic parameters of chloride diffusion into concrete and then the corrosion initiation time is estimated by a developed probabilistic service life model Also, two famous service life prediction models are compared using chloride profiles obtained from structures after about 40 years in the tidal exposure conditions. The results confirm that the influence of concrete quality on diffusion coefficients is related to the concrete pore structure and the time dependence is due to chemical reactions of sea water ions with hydration products which lead a reduction in pore structure. Also, proper attention to the durability properties of concrete may extend the service life of marine structures greater than fifty years, even in harsh environments.

Laboratory Experimentals and Numerical Analysis for Development of a Atmospheric Mixed Layer (대기 혼합층 발달 과정의 모형 실험과 수치 해석)

  • 이화운
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.17-26
    • /
    • 1993
  • The layer that is directly influenced by ground surface is called the atmospheric boutsdary layer in comparison with the free atmosphere of higher layer. In the boundary layer, the changes of wind, temperature and coefficient of turbulent diffusion in altitude are large and have great influences an atmospheric diffusion. The purpose of this paper is to express the structure and characteristics of development of mixed layer by using laboratory experiment and numerical simulation. Laboratory experiment using water tank are performed that closely simulate the process of break up of nocturnal surface inversion above heated surface and its phenomena are analyzed by the use of horizontally averaged temperature which is observed. The result obtained from the laboratory experiment is compared with theoretical ones from ; \textsc{k}-\varepsilon numerical model. The results are summarized as follows. 1) The horizontally averaged temperature was found to vary smoothly with height and the mixed layer developed obviously being affected by the convection. 2) The mean height of mixed layer may be predicted as a function of time, knowing the mean initial temperature gradient. The experimental values are associated well with the theoretical values computed for value of the universal constant $C_r$= 0.16, our $C_r$ value is little smaller than the value found by Townsend and Deardoru et al.

  • PDF

Chloride diffusivity of concrete: probabilistic characteristics at meso-scale

  • Pan, Zichao;Ruan, Xin;Chen, Airong
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.187-207
    • /
    • 2014
  • This paper mainly discusses the influence of the aggregate properties including grading, shape, content and distribution on the chloride diffusion coefficient, as well as the initiation time of steel corrosion from a probabilistic point of view. Towards this goal, a simulation method of random aggregate structure (RAS) based on elliptical particles and a procedure of finite element analysis (FEA) at meso-scale are firstly developed to perform the analysis. Next, the chloride diffusion coefficient ratio between concrete and cement paste $D_{app}/D_{cp}$ is chosen as the index to represent the effect of aggregates on the chloride diffusion process. Identification of the random distribution of this index demonstrates that it can be viewed as actually having a normal distribution. After that, the effect of aggregates on $D_{app}/D_{cp}$ is comprehensively studied, showing that the appropriate properties of aggregates should be decided by both of the average and the deviation of $D_{app}/D_{cp}$. Finally, a case study is conducted to demonstrate the application of this mesoscopic method in predicting the initiation time of steel corrosion in reinforced concrete (RC) structures. The mesoscopic probabilistic method developed in this paper can not only provide more reliable evidences on the proper grading and shape of aggregates, but also play an important role in the probability-based design method.

An Analytical Model for Predicting Heat Transport with a Sharp Depth Change in Cross-Flow Direction (흐름에 수직한 방향으로 급격한 수심 변화가 존재하는 해역에서의 열오염 이동 예측 해석해 모형)

  • Lee, Ho-Jin;Kim, Young-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.62-72
    • /
    • 2008
  • In this study, an analytical model has been developed to predict the build-up of heat field due to a point heat source in the presence of sharp cross-flow depth change. The model has been applied to investigate the effect of the depth change and flow pattern on the heat field. Model results show that, when there is a sharp depth change in cross-flow direction, the heat transport across the boundary of the depth change is enhanced or diminished according to the increasing or decreasing of the horizontal diffusion flux. Including residual components as well as tidal currents give rise to reduce the effect of the horizontal diffusion on the heat transport because of increasing the advection of heat.

Development of an Explanatory Model for Decision of Fashion Style and Its Diffusion Process Based on Ambivalence of Pursuit Values (유행 스타일의 결정과 확산에 대한 설명모형 연구 -추구가치의 양면성을 중심으로-)

  • 김선숙;이은영
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.4
    • /
    • pp.637-650
    • /
    • 1995
  • The purpose of the study was to develop a model to explain how a fashion style is determined within a society and how the style diffuses. The research was carried out in two stages, theoretical study followed by empirical study. In the theoretical study, explanatory model about decision of fashion style and diffusion was developed and then fashion diffusion theories and fashion phenomenon of postholder society were explained by the model developed. The theoretical framework of the explanatory model was constructed in that fashion changes by ambivalence of pursuit values within an individual as well as within a society. The empirical study was carried out to validate the model by looking into fashion phenomenon in the postmodern society A questionnaire was developed including style image, pursuit value, preference style and administered to 19 to 30 year-old women living in Seoul area. Frequency distribution, discriminant analysis, one-way ANOVA. were used for the statistical analysis. As pursuit values differed in each style preference stoup, and pursuit value coincided with image of preference style it was confirmed that clothing selection behavior was determined by pursuit value. In a postmodern society where variety of values are pursued, appearance of various products and preference of all styles altogether considered, it could assume that subcultural collective selection phenomenon appeared.

  • PDF

Change in rheological properties of radish during salting (염 절임동안에 일어나는 무조직의 유변학적인 변화)

  • Kim, Byung-Yong;Cho, Jae-Sun
    • Applied Biological Chemistry
    • /
    • v.35 no.5
    • /
    • pp.399-403
    • /
    • 1992
  • The amounts of salt diffused into radish after immersing in various concentrations of salt solution at different temperatures were measured and the changes of radish texture by the salt diffusion were estimatedwith the viscoelastic constants of a 3 element solid model determined by a stress relaxation test. While the amount of salt diffused throught radish was increased with increasing the salt concentration and soaking temperature, the istantaneous stress, equilibrium elastic solid and viscoelastic constants of radish were decreased. Also the degree of stress relaxation and equilibrium elastic solid approached the same or zero values, as salt concentration was further increased. Viscoelstic constants as well as salt diffusion were more influenced by lower salt concentration with increased temperatures.

  • PDF

Thermal Characteristics Simulation with Detecting Temperature for the Wearable Nylon-Yarn NOx Gas Sensors (웨어러블용 Nylon-Yarn NOx 가스 센서의 검출 온도 변화에 따른 열 특성 시뮬레이션)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.321-325
    • /
    • 2020
  • Atmospheric environmental problems have a major impact on human health and lifestyle. In humans, inhalation of nitrogen oxides causes respiratory diseases, such as bronchitis. In this paper, thermal analysis of a gas sensor was carried out to design and fabricate a wearable nylon-yarn gas sensor for the detection of NOx gas. In the thermal analysis method, the thermal diffusion process was analyzed while operating the sensors at 40 and 60℃ to secure a temperature range that does not cause thermal runaway due to temperature in the operating environment. Thermal diffusion analysis was performed using the COMSOL software. The thermal analysis results could be useful for analyzing gas adsorption and desorption, as well as the design of gas sensors. The thermal energy diffusion rate increased slightly from 10.05 to 10.1 K/mm as the sensor temperature increased from 40 to 60℃. It was concluded that the sensor could be operated in this temperature range without thermal breakdown.

The Critical Flux in Microfiltration: Comparison between Theoretical and Experimental Values (정밀여과에서 임계플럭스(Critical flux)에 관한 이론 및 실험적 고찰)

  • 윤성훈;이정학
    • Membrane Journal
    • /
    • v.7 no.3
    • /
    • pp.150-156
    • /
    • 1997
  • The particle back transport velocity from the membrane surface were evaluated to determine the critical flux. Four kinds of back transport mechanisms were considered, i.e. back diffusion, shear induced migration, lateral migration, and interaction enhanced migration. The interaction enhanced migration caused by electrostatic repulsion between particles and membrane surface was found to be the most important mechanism of particle back transport for the charged particles of 0.1 ~10${\mu}{\textrm}{m}$ diameter with 20 to 40 mV of zeta potential. Hematite particles with different sizes were synthesized with ferric chloride (FeCl$_3$) and hydrochloric acid (HCl) at high temperature, and subsequently experimental critical fluxes for each sized particle were obtained. The experimental results were well coincident with the calculated critical fluxes based on back transport mechanisms.

  • PDF