• Title/Summary/Keyword: welds

Search Result 798, Processing Time 0.025 seconds

Design and Structural Safety Evaluation of Canister for Dry Storage System of PWR Spent Nuclear Fuels

  • Taehyung Na;Youngoh Lee;Taehyeon Kim;Donghee Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.559-570
    • /
    • 2023
  • The aim of this study is to ensure the structural integrity of a canister to be used in a dry storage system currently being developed in Korea. Based on burnup and cooling periods, the canister is designed with 24 bundles of spent nuclear fuel stored inside it. It is a cylindrical structure with a height of 4,890 mm, an internal diameter of 1,708 mm, and an inner length of 4,590 mm. The canister lid is fixed with multiple seals and welds to maintain its confinement boundary to prevent the leakage of radioactive waste. The canister is evaluated under different loads that may be generated under normal, off-normal, and accident conditions, and combinations of these loads are compared against the allowable stress thresholds to assess its structural integrity in accordance with NUREG-2215. The evaluation result shows that the stress intensities applied on the canister under normal, off-normal, and accident conditions are below the allowable stress thresholds, thus confirming its structural integrity.

Research on stress distributions around welds of three-planar tubular Y-joints under out-of-plane bending moment

  • Shiliu Bao;Wenhua Wang;Jikai Zhou;Xin Li
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.181-196
    • /
    • 2023
  • Marine structures including offshore wind turbines (OWTs) always work under cyclic loads, which arouses much attention on the fatigue design. The tripod substructure is one of the typical foundation forms for fixed OWTs. The three-planar tubular Y-joint (3Y joint) is one of the important components in fatigue design as it is most likely to have cracks. With the existence of the multiplanar interaction effect, calculating the hot spot stress (HSS) of 3Y joints is complicated. To assist with fatigue design, the distributions of stress concentration factor (SCF) and multiplanar interaction factor (MIF) along weld toe curves induced by the out-of-plane bending moment are explored in this study. An FE analysis method was first developed and verified against experimental results. This method was applied to build a numerical database including 1920 FE models covering common ranges of geometric parameters. A parametric study has been carried out to reveal the distribution patterns of SCF and MIF. After multidimensional nonlinear fittings, SCF and MIF distribution formulas have been proposed. Accuracy and reliability checking prove that the proposed formulas are suitable for calculating the HSS of 3Y joints.

Uncertainty Quantification of Welding Residual Stress Analysis based on Domestic Organizations Round-Robin Evaluation (라운드로빈 평가 결과에 기반한 국내 기관의 용접잔류응력 해석 분포의 불확실성 평가)

  • Sung-Kyun Jung;Jun-Young Jeon;Chan-kyu Kim;Chang-Sik Oh;Sung-Sik Kang;Chang-Young Oh
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.130-139
    • /
    • 2023
  • This paper examines the quantification of uncertainty for welding residual stresses in dissimilar metal welds used in nuclear power plants. A mock-up of a dissimilar metal weld pipe, consisting of carbon and stainless steel pipes, was fabricated to measure the residual stress. A Round-Robin analysis was conducted by Korean institutions to assess the welding residual stress. The analysis was carried out in the second order, and the data obtained by each institution was evaluated based on the information provided. Using the Round-Robin results, the distribution of uncertainty in welding residual stresses among Korean institutions was evaluated. The quantification of uncertainty for Korean institutions was found to have a wider range compared to the distribution of welding residual stresses observed in overseas institutions. This study is considered useful in the establishment of comprehensive strategies for evaluating welding residual stress analysis methods used by domestic institutions.

Investigation of the effect of bolt diameter and end plate thickness change on bolt column-beam connection

  • Samet Oguzhan Dogan;Senol Gursoy;Ramazan Ozmen
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.155-170
    • /
    • 2024
  • Several types of column-beam connections are used in the design of steel structures. This situation causes different cross-section effects and, therefore, different displacements and deformations. In other words, connection elements such as welds, bolts, continuity plates, end plates, and stiffness plates used in steel column-beam connections directly affect the section effects. This matter reveals the necessity of knowing the steel column-beam connection behaviours. In this article, behaviours of bolted column-beam connection with end plate widely used in steel structures are investigated comparatively the effects of the stiffness plates added to the beam body, the change in the end plate thickness and bolt diameter. The results obtained reveal that the moment and force carrying capacity of the said connection increases with the increase in the end plate thickness and bolt diameter. In contrast, it causes the other elements to deform and lose their capacity. This matter shows that optimum dimensions are very important in steel column-beam connections. In addition, it has been seen that adding a stiffness plate to the beam body part positively contributes to the connection's moment-carrying capacity.

Analytical Modeling of Seismic Steel Moment Connections Reinforced with Welded Straight Haunch (용접 수평헌치로 보강된 내진 철골 모멘트 접합부의 해석적 모형화)

  • Lee, Cheol-Ho;Yoon, Tae-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.559-568
    • /
    • 2000
  • This paper describes new analytical modeling for steel moment connections with welded straight haunch. Among a variety of new details for seismic steel moment connections proposed after the 1994 Northridge and the 1995 Hyogo-Ken Nanbu earthquake, one viable solution was to strengthen the connection by adding a triangular haunch on the bottom side of the beam. However, a simpler design has been called for because of the increased labor associated with fitting the triangular haunch. Adding a straight haunch is one alternative. But a mathematical model that forms the design basis is not available. A simplified analytical model that considers the force interaction and deformation compatibility between the beam and haunch is developed in this study. The proposed modeling predicted quite reasonably the interaction forces at the beam-haunch interface and the flexural stresses in the beam and haunch flange groove welds.

  • PDF

A Balanced Panel Zone Strength Criterion for Reduced Beam Section Steel Moment Connections (보 플랜지 절취형 (RBS) 철골 모멘트 접합부의 균형패널존 강도)

  • Lee, Cheol Ho;Kim, Jae Hoon;Jeon, Sang Woo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2006
  • This paper presents test results on reduced beam section (RBS)program addressed panel zone (PZ) strength as the key variables. PZ strength has been much debated issue for several decades. A desirable range of PZ strength has not yet been proposed despite the fact that a significant amount of RBS test data is available. Test results from this study and by others showed that panel zones could easily develop a plastic rotation of 0.01 radian without causing distress to the beam flange groove welds. At this deformation level, the amount of beam distortion (i.e., buckling) was about one half that developed in strong PZ specimens. A criterion for a balanced PZ strength that improves the plastic rotation capacity while reducing the amount of beam buckling is proposed.

Effects of Post Weld Heat Treatment on Microstructures of Alloy 617 and 263 Welds for Turbines of HSC Power Plants (HSC발전소 터빈용 초내열합금 Alloy 617 및 263 용접부의 미세조직에 미치는 후열처리의 영향)

  • Kim, Jeong Kil;Shim, Deog Nam;Park, Hae Ji
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.52-60
    • /
    • 2016
  • Recently nickel based superalloys are extensively being regarded as the materials for the steam turbine parts for hyper super critical (HSC) power plants working at the temperature over $700^{\circ}C$, since the materials have excellent strength and corrosion resistance in high temperature. In this paper, alloy 617 of solution strengthened material and alloy 263 of ${\gamma}^{\prime}$-precipitation strengthened material were prepared as the testing materials for HSC plants each other. Post weld heat treatment (PWHT) was conducted with the gas tungsten arc (GTA) welded specimens. The microstructure of the base metals and weld metals were investigated with Electron Probe Micro-Analysis (EPMA) and Scanning Transmission Electron Microscope (STEM). The experimental results revealed that Ti-Mo carbides were formed in both of the base metals and segregation of Co and Mo in both of the weld metals before PWHT and PWHT leaded to precipitation of various carbides such as Mo carbides in the specimens. Furthermore, fine ${\gamma}^{\prime}$ particles, that were not precipitated in the specimens before PWHT, were observed in base metal as well as in the weld metal of alloy 263 after PWHT.

Effect of Welding Condition on Tensile Properties of Friction Stir Lap Joint of Dissimilar Al Alloy, KS5J32/AA6K31 (이종 알루미늄 합금 KS5J32/AA6K31 겹치기 마찰교반 접합부의 인장성질에 미치는 접합조건의 영향)

  • Kim, Sang-Ju;Yoon, Tae-Jin;Song, Sang-Woo;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.98-105
    • /
    • 2012
  • The focus of this investigation is to evaluate the effect of joining parameter on the microstructure and mechanical properties of welds produced by friction stir lap welding. The dissimilar Al alloys, KS5J32 and AA6K31, were joined by friction stir lap welding technique under several welding conditions, and KS5J32 alloy was placed on the top of AA6K31 alloy. The tool rotation speeds were 1000, 1250, and 1500rpm, and the welding speeds were 100, 300, 500, 700mm/min, respectively. The results showed that two shapes of nugget, such as onion ring and irregular vortex type, were observed with various revolutionary pitch. In all welding conditions, fracture occurred at the soften region of bottom sheet(AA6K31) and the strengths were 64~78% of those of base metal. Fractured positions were classified into three types : HAZ, triple point, void depending on the revolutionary pitch. The actual thickness of specimen at the fractured location was decreased with decreasing heat input. A linear relationship exists between the effective thickness of fractured position and peak load.

A study on Computer-controlled Ultrasonic Scanning Device (컴퓨터제어에 의한 자동초음파 탐상장치에 관한 연구)

  • Huh, H.;Park, C.S.;Hong, S.S.;Park, J.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.30-38
    • /
    • 1989
  • Since the nuclear power plants in Korea have been operated in 1979, the nondestructive testing (NDT) of pressure vessels and/or piping welds plays an important role for maintaining the safety and integrity of the plants. Ultrasonic method is superior to the other NDT method in the viewpoint of the detectability of small flaw and accuracy to determine the locations, sizes, orientations, and shapes. As the service time of the nuclear power plants is increased, the radiation level from the components is getting higher. In order to get more quantitative and reliable results and secure the inspector from the exposure to high radiation level, automation of the ultrasonic equipments has been one of the important research and development(R & D) subject. In this research, it was attempted to visualize the shape of flaws presented inside the specimen using a Modified C-Scan technique. In order to develope Modified C-Scan technique, an automatic ultrasonic scanner and a module to control the scanner were designed and fabricated. IBM-PC/XT was interfaced to the module to control the scanner. Analog signals from the SONIC MARK II were digitized by Analog-Digital Converter(ADC 0800) for Modified C-Scan display. A computer program has been developed and has capability of automatic data acquisition and processing from the digital data, which consist of maximum amplitudes in each gate range and locations. The data from Modified C-Scan results was compared with shape from artificial defects using the developed system. Focal length of focused transducer was measured. The automatic ultrasonic equipment developed through this study is essential for more accurate, reliable, and repeatable ultrasonic experiments. If the scanner are modified to meet to appropriate purposes, it can be applied to automation of ultrasonic examination of nuclear power plants and helpful to the research on ultrasonic characterization of the materials.

  • PDF

Experimental study on all-bolted joint in modularized prefabricated steel structure

  • Wu, Zhanjing;Tao, Zhong;Liu, Bei;Zuo, Heng
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.613-620
    • /
    • 2020
  • The research study is focuses on a form of all-bolted joint with the external ring stiffening plate in the prefabricated steel structure. The components are bolted at site after being fabricated in the factory. Six specimens were tested under cyclic loading, and the effects of column axial compression ratio, concrete-filled column, beam flange sub plate, beam web angle cleats, and spliced column on the failure mode, hysteretic behavior and ductility of the joints were analyzed. The results shown that the proposed all-bolted joint with external ring stiffening plate performed high bearing capability, stable inflexibility degradation, high ductility and plump hysteretic curve. The primary failure modes were bucking at beam end, cracking at the variable section of the external ring stiffening plate, and finally welds fracturing between external ring stiffening plate and column wall. The bearing capability of the joints reduced with the axial compression ratio increased. The use of concrete-filled steel tube column can increase the bearing capability of joints. The existence of the beam flange sub plate, and beam web angle cleat improves the energy dissipation, ductility, bearing capacity and original rigidity of the joint, but also increase the stress concentration at the variable section of the external reinforcing ring plate. The proposed joints with spliced column also performed desirable integrity, large bearing capacity, initial stiffness and energy dissipation capacity for engineering application by reasonable design.