• 제목/요약/키워드: welding material

검색결과 1,142건 처리시간 0.028초

중첩된 알루미늄 판재의 셰이빙 전단접합에 관한 연구 (A Shaving Shear-Welding Process for Overlapped Aluminum Plates)

  • 상리동;김태현;진인태
    • 소성∙가공
    • /
    • 제21권8호
    • /
    • pp.467-472
    • /
    • 2012
  • Shaving shear-welding is a solid-state welding process, which utilizes plastic deformation of surplus material. The solid-state nature of this process contributes to high integrity and strength of the weld. The objective of this study was to investigate the effects of process variables on the material flow patterns and identify the process condition for obtaining the best weld. FEM simulations were carried out along with experimental characterizations. The results showed the importance of the cutter angles and the overlap lengths, and helped attain the optimum shaving shear-welding die and the best process condition.

$621^{\circ}C$급 화력발전용 소재 실기규모 Mock-up품 구조용접부 특성평가 (Characteristic Evaluation of mock-up Structural Welding between casting and pipe for USC TPP)

  • 이명열;지병하;송근호;김정태
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2007년 추계학술발표대회 개요집
    • /
    • pp.39-41
    • /
    • 2007
  • In this study, actual scale welding were conducted at the USC thermal power plant turbine and main steam pipe casting candidate mock up material 9Cr-1.5Mo-CoVNbNB steel(CB2) and 9Cr-0.5Mo-MVNbN steel(P92). And to evaluate the welding process for the actual production, mechanical property testes were conducted for the weld metal. The Mock-up welding condition successfully led to an excellent structural welding joint between casting and pipe material.

  • PDF

박판 $CO_2$레이져 빔 용접과 소재접합일체성형에 관한 연구 (A Study on the CO $_2$Laser Beam Welding of Thin Steel Sheets and Tailor Welded Blank)

  • 이희석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.159-164
    • /
    • 1996
  • For the purpose of establishing laser welding condition(laser power, welding speed and beam focus) and of evaluating tailor welded blank for three kinds of thin steel sheets of SPCC, SK5M and SUS304 using in the thin plate structure such as automobile, train and so on. Their $CO_2$ laser weldability were primarily tested under various welding condition. SPCC and SUS304 thin sheets showed good weldability under some welding condition. But, high carbon steel sheet SK5M needs heat treatment after welding to obtain higher tensile strength and ductility of the welded joint. And next, laser welding condition. Butt-welded specimens were not nearly broken at weld bead. However, base material were ruptured in the direction of circumference. The forming depths by tailor weld bead. However, base material were ruptured in the direction of circumference. The forming depths by tailor welded blank were SPCC+SPCC=22~25mm, SUS304+SUS304=25~43mm and SK5M+SK5M=13~17mm.

  • PDF

용접부의 균열진전에 따른 잔류응력 재분포 해석 (Numerical Analysis of Residual Stress Redistribution due to Fatigue Crack Propagation of Weld Zone)

  • 이동형;구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.225-231
    • /
    • 2002
  • The problem of welding stresses and fatigue behavior is the main concerns of welding research fields. The residual stresses and distortion of structures by welding is exert negative effect on the safety of mechanical structures. That is, expansion of material by high temperature and distortion by cooling during welding process is caused of tensile and compressive residual stresses on welding material, and this residual stresses reduce fracture and fatigue strength of welding structures. The accurate prediction of residual stress and redistribution due to fatigue crack propagation of weld zone is very important to improve the quality of weldment. In this study, a finite element modeling technique is developed to simulate the redistribution of residual stresses due to fatigue crack propagation of weld zone.

  • PDF

Calculation of Welding Deformations by Simplified Thermal Elasto-plastic Analysis

  • Seo Sung Il
    • Journal of Ship and Ocean Technology
    • /
    • 제8권3호
    • /
    • pp.40-49
    • /
    • 2004
  • Welding deformations injure the beauty of appearance of a structure, decrease its buckling strength and prevent increase of productivity. Welding deformations of real structures are complicated and the accurate prediction of welding deformations has been a difficult problem. This study proposes a method to predict the welding deformations of large structures accurately and practically based on the simplified thermal elasto-plastic analysis method. The proposed method combines the inherent strain theory with the numerical or theoretical analysis method and the experimental results. The weld joint is assumed to be divided into 3 regions such as inherent strain region, material softening region and base metal region. Characteristic material properties are used in structural modeling and analysis for reasonable simplification. Calculated results by this method show good agreement with the experimental results. It was proven that this method gives an accurate and efficient solution for the problem of welding deformation calculation of large structures.

The Effects of Heat Input and Gas Flow Rate on Weld Integrity for Sleeve Repair Welding of In-Service Gas Pipelines

  • Kim, Y.P.;Kim, W.S.;Bang, I.W.;Oh, K.H.
    • International Journal of Korean Welding Society
    • /
    • 제2권2호
    • /
    • pp.36-41
    • /
    • 2002
  • The experimental and numerical study has been conducted on the sleeve repair welding of API 5L X65 pipeline. SMAW and GTAW were applied to weld the sleeve. The macrostructure and hardness of repair welds have been examined. The finite element analysis of the multi-pass sleeve-fillet welding has been conducted to validate the experiment and investigate the effects of in-service welding conditions. The effect of gas flow rate on the hydrogen cracking was investigated. The effect of internal pressure on residual stresses and plastic strain was investigated. The allowable heat input was predicted considering the maximum temperature of inner surface of pipe and cooling rate at CGHAZ.

  • PDF

Optimization of GMAW Process Parameters to Improve the Length of Penetration in EN 10025 S 235 Grade

  • Deshpande, M.U.;Kshirsagar, J.M.;Dharmadhikari, Dr. H.M.
    • Journal of Welding and Joining
    • /
    • 제35권1호
    • /
    • pp.74-78
    • /
    • 2017
  • In auto ancillary fabrication industry, GMAW is a very useful & important welding process and EN10025 S 235 Grade is common material used for manufacturing of two wheeler chassis. This research gives the detail influence of welding process parameters such as welding current, welding voltage, wire speed on the penetration in EN10025 S 235 Grade mild steel material. The experimentation of this research has been carried out by using three factors, three level Taguchi DOE method. To analyze & optimize the welding parameters & characteristics, analysis of variance, L9 orthogonal array & signal to noise ratio are used. Length of Penetration in addition to the depth of penetration is major concern in fillet welded joints, as the penetration decides the strength of the welded joint. After analysis of penetration in all 9 welded samples, optimize parameters readings verified & found probability value within 0.05.From this research it is come to know that welding current & welding voltage is major parameters which affects the penetration in welded joints.

PLASTICITY-BASED WELDING DISTORTION ANALYSIS OF THIN PLATE CONNECTIONS

  • Jung, Gonghyun;Tsai, Chon L.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.694-699
    • /
    • 2002
  • In autobody assembly, thin-wall, tubular connections have been used for the frame structure. Recent interest in light materials, such as aluminum or magnesium alloys, has been rapidly growing for weight reduction and fuel efficiency. Due to higher thermal expansion coefficient, low stiffness/strength, and low softening temperature of aluminum and magnesium alloys, control of welding-induced distortion in these connections becomes a critical issue. In this study, the material sensitivity to welding distortion was investigated using a T-tubular connection of three types materials; low carbon steel (A500 Gr. A), aluminum alloy (5456-H116) and magnesium alloy (AZ91C-T6). An uncoupled thermal and mechanical finite element analysis scheme using the ABAQUS software program was developed to model and simulate the welding process, welding procedure and material behaviors. The predicted angular distortions were correlated to the cumulative plastic strains. A unique relationship between distortion and plastic strains exists for all three materials studied. The amount of distortion is proportional to the magnitude and distribution of the cumulative plastic strains in the weldment. The magnesium alloy has the highest distortion sensitivity, followed by the other two materials with the steel connection having the least distortion. Results from studies of thin-aluminum plates show that welding distortion can be minimized by reducing the cumulative plastic strains by preventing heat diffusion into the base metal using a strong heat sink placed directly beneath the weld. A rapid cooling method is recommended to reduce welding distortion of magnesium tubular connections.

  • PDF

플런저용 강재의 이종재 마찰용접과 AE에 의한 실시간 평가 (Friction Welding of Dissimilar Plunger Materials and Its Real Time Evaluation by AE)

  • 공유식;조상근;김영대;오세규
    • 동력기계공학회지
    • /
    • 제6권2호
    • /
    • pp.48-53
    • /
    • 2002
  • Plunger (piston rod) materials are used in high-pressure condition. So STD11 is the essential material to build this plunger. However, it costs more to make a plunger by using only STD11 than using the welding of STD11 to SCM440 and other dissimilar material. And it has been difficult to weld this sort of dissimilar materials. They could be unstable in the quality by the conventional arc welding. And also they have a lot of technical problems in manufacturing. But, by the friction welding technique, it will be able to be made without such problems. And then, on account of such reasons, we need a new approach of study on real-time quality evaluation by acoustic emission (AE) techniques as well as a domestic development of the plunger by friction welding. So that, the purpose of this study for such developments is the development of a plunger by optimizing of friction welding with more reliability and more applicability. Then, this study aimed not only to develop the optimization of friction welding of dissimilar plunger steels of STD11 to SCM440, but also to develop the application technique of the acoustic emission to accomplish an in-process real-time quality evaluation during friction welding of the plunger materials by the AE technique.

  • PDF

TIG-FSW 하이브리드 용접을 이용한 이종재 맞대기 용접부의 온도 분포 특성 (Temperature Behavior in Dissimilar Butt Joint During TIG Assisted Friction Stir Welding)

  • 방희선;엠 에스 엠조이
    • Journal of Welding and Joining
    • /
    • 제29권5호
    • /
    • pp.63-71
    • /
    • 2011
  • Three-dimensional finite element analysis is performed to study the temperature distribution phenomenon of TIG assisted friction stir welding (TAFSW) between dissimilar plates (Al 6061-T6 and stainless steel 304). TAFSW is a solid-state welding process that integrates TIG (Tungsten Inert Gas) into a friction stir welding (FSW), to preheat the harder material ahead of FSW tool during welding. In order to facilitate the industrial application of welding, 3D numerical modeling of heat transfer has been carried out applying Finite Element Method (FEM). The temperature distribution due to heat generation during TAFSW on dissimilar materials joint is analysed using in-house solver. Moving heat source along with frictional heat between the work specimens and tool surface is considered to calculate the heat input. The analytical model used predicts successfully the maximum welding temperatures that occur on the dissimilar materials during TAFSW. Comparison with the infra red camera and thermocouple measurement results shows that the results from the current numerical simulation have good agreement with the measured data.