• Title/Summary/Keyword: welding joint

Search Result 1,132, Processing Time 0.026 seconds

APPLYING LASER-ARC HYBRID WELDING TECHNOLOGY FOR LAND PIPELINES

  • Booth, G-S;Howse, D-S;Woloszyn, A-C;Howard, R-D
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.169-175
    • /
    • 2002
  • World demand for natural gas has generated the need for many new land transmission pipelines to be installed in the next decade or so. Although mechanized gas metal arc welding is well developed, there are opportunities for cost savings by using alternative welding processes. Hybrid Nd:YAG laser - gas metal arc welding enables fibre optic delivery of the laser energy to a robotic welding head to be combined with the addition of extra energy and a consumable to produce good quality, deep penetration welds in a single pass. The present paper describes initial procedure development to optimize the laser and gas metal arc welding parameters for making joints in pipeline steel. Satisfactory joint quality was obtained and it is intended to develop the process to prototype field trials.

  • PDF

Numerical analysis of post welding heat treatment base on the thermal creep elastic-plastic theory (점열탄소성 이론에 의한 용접후열처리에 대한 수치해석)

  • 방한서;차용훈;오율권;노찬승;김종명
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.113-123
    • /
    • 1997
  • The welding residual stresses produced by welding frequently cause a crack and promote stress corrosion etc. in heat affected zone contained with external load and weakness of material. For the purpose pof relaxation of welding residual stress, post welding heat teratment(PWHT) is widely used. In this paper, the computer program which is based on Thermal-Elasto-plastic-creep theory for plane deformation on developed by finite element method (F.E.M) and verified its propriety by experimental measurement and also by using the developed computer program. The mechanical behavior of butt welding joint is clairfied during PWHT.

  • PDF

Evaluation of Laser Welding Characteristics of 1.5GPa Grade Ultra High Strength Steel for Automotive Application (1.5GPa급 자동차용 고강도강의 레이저 용접부 특성평가)

  • Kim, Yong;Park, Ki-Young;Lee, Kyoung-Don;Jeong, Jun-Kou;Kim, Dong-Wha
    • Laser Solutions
    • /
    • v.13 no.4
    • /
    • pp.1-6
    • /
    • 2010
  • Recently the use of ultra high strength steels (UHSS) in structural and safety component is rapidly increasing in the automotive industry. For example, 1.5GPa grade hot stamping with die-quenching of boron steel 22MnB5 could apply crash-resistant parts such as bumpers and pillars. The development of laser welding process of hot stamping steels, fundamental bead-on-plate welding and lap joint welding test were carried out using 3kW Nd:YAG laser. Local hardening & HAZ softening occurred in hot stamping steel as a result of metallurgical change caused by the welding heat input in the Nd:YAG laser welding process. The size of soft zones in the hot stamping steel was related to the welding heat input, being smaller at high speeds which generated a smaller heat input. Also in the case of lap joint design structure, same welded characteristics were shown. The HAZ softening degree was controlled to ensure the joint strength.

  • PDF

A comparative study on the tensile bonding strength of gold alloy solder joints by dental soldering method (치과용 납착 방법에 따른 금합금 납착 연결부의 인장 결합강도 비교 연구)

  • Cho, Mi-Hyang;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • In this study, to provide the fundamental data on stable connection method for successful implants prosthesis, We fabricated the solder joint of gold alloy bar specimens by gas flame soldering method and laser welding and soldering method. It compared and studied the tensile strength of two soldering method by universal testing machine. The results using universal testing machine were as follow : The mean of tensile strength of solder joint bar in gas flame soldering method specimens was 363.89 $\pm$17.62 MPa, and the mean strength of laser welding and soldering method was 125.91 $\pm$ 19.66 MPa, so gas flame soldering method was better than laser welding and soldering method and the finding better way to improve tensile strength is needed in laser welding method. On weak loading condition and the part which is needed an accuracy, laser welding method is more effective and on long-span prosthesis and frequent chewing loading part, laser welding technique is recommended first and applying additional gas flame soldering technique would be better for making much more successful prosthesis.

  • PDF

Analysis of Angular Deformation in Multi-pass Butt Joint Welding of Thick Plates with X-shape Grooves using the Finite Element Method (X형 개선을 가진 후판 맞대기 용접에 있어서 유한요소법을 이용한 각변형 해석)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.169-176
    • /
    • 2018
  • Removal of angular deformation induced during the welding of butt joints in thick steel plates needs expert skill and is costly. To reduce deformation, proper joint designs are studied with a prediction of deformation prior to welding. However, as the thickness of a plate increases, a predictive analysis of the welding process is more difficult, especially if there is an increase in the number of welding passes in the joint. In this study, a numerical model with the finite element method (FEM) was developed to analyze the angular deformation in the multi-pass welding of butt joints of plates made of AH32 steel that had a thickness of up to 100 mm. A series of numerical simulations were then performed based on the developed model to predict the deformations for thick plates. With the results obtained by the analyses, this study suggested optimal X-shape grooves for the butt joints of thick plates to minimize the angular deformation. As the thickness of the plate increased to 100 mm, the ratio of the depth of the front-side groove to that of the back-side groove should be gradually increased to nearly 1:3.

The Effect of Welding Residual Stress on Whole Structure with T-Joint RHS

  • Rajesh S. R.;Bang H. S.;Kim H.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.60-65
    • /
    • 2005
  • In the field of welding the mechanical behavior of a welded structure under consideration may be predicted via heat transfer and welding residual stress analysis. Usually such numerical analyses are limited to small regular mesh models or test specimens. Nevertheless, there is very few strength assessment of the whole structure that includes the effect of welded residual stress. The present work is based on the specialized finite element codes for the calculation of nonlinear heat transfer details and residual stress including the external load on the welded RHS (Rectangular Hollow Section) T-joint connections of the whole structure. First the thermal history of the combined fillet and butt-welded T-joint equal width cold-formed RHS are calculated using nonlinear finite element analysis (FEA) considering the quarter model of the joint. Then using this thermal history the residual stress around the joints has been evaluated. To validity the FEA result, the calculated residual stresses were compared with the available experimental results. The residual stress obtained from the quarter model is mapped to the full model and then to the whole structure model using FEM codes. The results from the FEM codes were exported to the commercial package for visualization and further analysis applying loads and boundary conditions on the whole structure. The residual stress redistribution along with the external applied load is examined computationally.

  • PDF

Evaluation of Microstructure and Mechanical Properties of Friction Stir Lap Jointed Inconel 600/SS 400 (겹치기 마찰교반접합된 Inconel 600/SS 400 합금의 미세조직과 기계적 특성 평가)

  • Song, Kuk-Hyun;Nakata, Kazuhiro
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.123-129
    • /
    • 2012
  • The microstructures and mechanical properties of friction stir welded lap joints of Inconel 600 and SS 400 were evaluated; friction stir welding was carried out at a tool rotation speed of 200 rpm and welding speed of 100 mm/min. Electron back-scattering diffraction and transmission electron microscopy were introduced to analyze the grain boundary characteristics and the precipitates, respectively. Application of friction stir welding was notably effective at reducing the grain size of the stir zone. As a result, the reduced average grain size of Inconel 600 ranged from $20{\mu}m$ in the base material to $8.5{\mu}m$ in the stir zone. The joint interface between Inconel 600 and SS 400 showed a sound weld without voids and cracks, and MC carbides with a size of around 50 nm were partially formed at the Inconel 600 area of lap joint interface. However, the intermetallic compounds that lead to mechanical property degradation of the welds were not formed at the joint interface. Also, a hook, along the Inconel 600 alloy from SS 400, was formed at the advancing side, which directly brought about an increase in the peel strength. In this study, we systematically discussed the evolution of microstructures and mechanical properties of the friction stir lap joint between Inconel 600 and SS 400.

Minimization of Welding Defect in $CO_2$ Laser Welded Tube

  • Suh Jeong;Kang Hee-Shin;Lee Jae-Hoon;Park Kyoung-Taik;Lee Moon-Yong;Jung Byung-Hun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.3
    • /
    • pp.19-23
    • /
    • 2005
  • To minimize the weld defect in manufacturing of the welded tube by using $CO_2$ laser, the monitoring of the welding quality and the seam tracking along the butt-joint lengthwise to the tube axis are studied. The longitudinal butt-joint is shaped from $60kgf/mm^2$ grade steel sheet by 2 roll bending method, and welded by the $CO_2$ laser welding system equipped with the seam tracker and plasma sensor. The laser welded tube has the thickness of 1.5mm, diameter of 105.4mm and length of 2000mm. The precise positioning of the laser beam on the butt-joint to be assembled is obtained within $200{\mu}m$ by the laser vision sensor. The artificial defects in the butt-joint are well observed by the signal of plasma intensity measured from the plasma sensor of UV wavelength range within 400nm. The developed $CO_2$ laser tube welding system has the function of the precision seam tracking and the real-time monitoring of the welding quality. In conclusion, the laser welded tube can be used for manufacturing of automobile chassis and components after hydro-forming.

Effects of Residual Stress with Welding Condition in the Steel Structure of H-beam (H 빔 구조물의 T-Joint에서 용접조건에 따른 용접잔류응력의 영향)

  • 석한길
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.568-574
    • /
    • 2003
  • In the welding for the steel structure of H-beam with mild steel and 490N/$\textrm{mm}^2$ high tensile steel, we applied the fillet weld mostly and 6-8mm weld length(AISC-spec.). And a new developed metal-cored-wire is used in automatic welding as well as semi-automatic welding. In this study we have attempted to raise the welding productivity and to stabilize the quality on horizontal positions of fillet welding with the following items: - We improved the weld productivity using metal based cored wire with a high deposition rate in the steel structure of H-beam. - We tested the weldability and evaluated the quality of the weldmetal by horizontal fillet $CO_2$ welding. The process is carried out in combination with a special purpose metal-based FCW with excellent resistance to porosity and high welding speed. - We studied the micro structure of the weldmetal by the various welding conditions. - We studied the effect of welding residual stress by the welding conditions in T-joint. Therefore, it can be assured that more productive and superior quality of the weldmetal can be taken from this study results.

Laser Welding Characteristics of Aluminum and Copper Sheets for Lithium-ion Batteries (자동차 이차전지 제조를 위한 알루미늄과 무산소동의 레이저 용접특성)

  • Kang, Minjung;Park, Taesoon;Kim, Cheolhee;Kim, Jeonghan
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.58-64
    • /
    • 2013
  • Several joining methods involving resistance welding, laser welding, ultrasonic welding and mechanical joining are currently applied in manufacturing lithium-ion batteries. Cu and Al alloys are used for tab and bus bar materials, and laser welding characteristics for these alloys were investigated with similar and dissimilar material combinations in this study. The base materials used were Al 1050 and oxygen-free Cu 1020P alloys, and a disk laser was used with a continuous wave mode. In bead-on-plate welding of both alloys, the joint strength was higher than the strength of O tempered base material. In overlap welding, the effect of welding parameters on the tensile shear strength and bead shape was evaluated. Tensile shear strength of overlap welded joint was affected by interfacial bead width and weld defect formation. The tensile-shear specimen was fractured at the heat affected zone by selecting proper laser welding parameters.