• 제목/요약/키워드: weld seam

Search Result 144, Processing Time 0.023 seconds

THE DEVELOPMENT OF THE NARROW GAP MULTI-PASS WELDING SYSTEM USING LASER VISION SYSTEM

  • Park, Hee-Chang;Park, Young-Jo;Song, Keun-Ho;Lee, Jae-Woong;Jung, Yung-Hwa;Luc Didier
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.706-713
    • /
    • 2002
  • In the multi-pass welding of pressure vessels or ships, the mechanical touch sensor system is generally used together with a manipulator to measure the gap and depth of the narrow gap to perform seam tracking. Unfortunately, such mechanical touch sensors may commit measuring errors caused by the eterioration of the measuring device. An automation system of narrow gap multi-pass welding using a laser vision system which can track the seam line of narrow gap and which can control welding power has been developed. The joint profile of the narrow gap, with 250mm depth and 28mm width, can be captured by laser vision camera. The image is then processed for defining tracking positions of the torch during welding. Then, the real-time correction of lateral and vertical position of the torch can be done by the laser vision system. The adaptive control of welding conditions like welding Currents and welding speeds, can also be performed by the laser vision system, which cannot be done by conventional mechanical touch systems. The developed automation system will be adopted to reduce the idle time of welders, which happens frequently in conventional long welding processes, and to improve the reliability of the weld quality as well.

  • PDF

The Development of the Narrow Gap Multi-Pass Welding System Using Laser Vision System

  • Park, H.C.;Park, Y.J.;Song, K.H.;Lee, J.W.;Jung, Y.H.;Didier, L.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.45-51
    • /
    • 2002
  • In the multi-pass welding of pressure vessels or ships, the mechanical touch sensor system is generally used together with a manipulator to measure the gap and depth of the narrow gap to perform seam tracking. Unfortunately, such mechanical touch sensors may commit measuring errors caused by the deterioration of the measuring device. An automation system of narrow gap multi-pass welding using a laser vision system which can track the seam line of narrow gap and which can control welding power has been developed. The joint profile of the narrow gap, with 250mm depth and 28mm width, can be captured by laser vision camera. The image is then processed for defining tracking positions of the torch during welding. Then, the real-time correction of lateral and vertical position of the torch can be done by the laser vision system. The adaptive control of welding conditions like welding currents and welding speeds, can also be performed by the laser vision system, which cannot be done by conventional mechanical touch systems. The developed automation system will be adopted to reduce the idle time of welders, which happens frequently in conventional long welding processes, and to improve the reliability of the weld quality as well.

  • PDF

Development of an algorithm for Controlling Welding Bead Using Infrared Thermography (적외선 카메라를 이용한 용접비드를 제어하기 위한 알고리즘 개발)

  • ;;;;;Y.Prasad
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.55-61
    • /
    • 2000
  • Dynamic monitoring of weld pool formation and seam deviations using infrared vision is described in this paper. Isothermal contours representing heat dissipation characteristics during the process of arc welding were analysed and processed using imaging techniques. Maximum bead width and penetration were recorded and the geometric position in relation to the welding seam was measured at each sampling point. Deviations from the desired bead geometry and welding path were sensed and their thermographic representations were digitised and welding path were sensed and their thermographic representations were digitised and subsequently identified. Evidence suggested that infrared thermography can be utilized to compensate for inaccuracies encountered in real-time during robotic arc welding.

  • PDF

Signal Analysis of Rotational Arc Device in GMAW (회전 아크 장치를 이용한 GMAW 용접 신호 분석)

  • Kim, Ji-Tae;Shi, Yong-Hua;Na, Seok-Ju
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.326-328
    • /
    • 2005
  • High speed rotational arc sensing is an important method to detect the torch deviation during automatic seam tracking of arc welding. In this paper, a mathematic model of high speed rotational arc sensing is analyzed. The simulation results are consistent with the experimental results. The current waveforms at the beginning of the welding are different from those at middle of the welding because of the formation of the weld bead profile. The signal patterns for seam tracking and end-point detection are proposed. A phase shift between the rotation and the current variation is also discovered in the experiments.

  • PDF

Fiber Laser Welding in the Car Body Shop - Laser Seam Stepper versus Remote Laser Welding -

  • Kessler, Berthold
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.17-22
    • /
    • 2013
  • The excellent beam quality of high power fiber lasers are commonly used for remote welding applications in body job applications. The Welding speed and productivity is unmatched with any other welding technology including resistance spot welding or traditional laser welding. High tooling cost for clamping and bulky safety enclosures are obstacles which are limiting the use. With the newly developed Laser stitch welding gun we have an integrated clamping in the process tool and the laser welding is shielded in a way that no external enclosure is needed. Operation of this laser welding gun is comparable with resistance spot welding but 2-times faster. Laser stitch welding is faster than spot welding and slower than remote welding. It is a laser welding tool with all the laser benefits like welding of short flanges, weld ability of Ultra High Strength steel, 3 layers welding and Aluminium welding. Together with low energy consumption and minimum operation cost of IPG fiber laser it is a new and sharp tool for economic car body assembly.

The effect of mechanical inhomogeneity in microzones of welded joints on CTOD fracture toughness of nuclear thick-walled steel

  • Long Tan;Songyang Li;Liangyin Zhao;Lulu Wang;Xiuxiu Zhao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4112-4119
    • /
    • 2023
  • This study employs the microshear test method to examine the local mechanical properties of narrow-gap welded joints, revealing the mechanical inhomogeneity by evaluating the microshear strength, stress-strain curves, and failure strain. On this basis, the influence of weld joints micromechanical inhomogeneity on the crack tip opening displacement (CTOD) fracture toughness is investigated. From the root weld layer to the cover weld layer, the fracture toughness at the center of the weld seam demonstrates an increasing trend, with the experimental and calculated CTOD values showing a good correspondence. The microproperties of the welded joints significantly impact the load-bearing capacity and fracture toughness. During the deformation process of the "low-matching" microregions, the plastic zone expansion is hindered by the surrounding microregion strength constraints, thus reducing the fracture toughness. In contrast, during the deformation of the "high-matching" microregions, the surrounding microregions absorb some of the loading energy, partially releasing the concentrated stress at the crack tip, which in turn increases the fracture toughness.

A Experiment Study on Selection the Optimal Condition for GMA Root-pass Welding in Overhead and Vertical Position (GMA 위보기 및 수직자세 초층용접 최적조건 선정에 관한 실험적 연구)

  • Kim, Ji-Sun;Kim, In-Ju;Kim, Ill-Soo
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.42-48
    • /
    • 2012
  • Due to increase in demand of stable and long pipelines in natural gas industry, wide range of researches are being performed on automation welding to improved welding quality with respect to weld process parameters in real time measurement. In particular, the coupling between the pipe manufacturing process and location of the weld seam, the measured size of the gap that exists in the weld position and the weld angle depending on whether the movement of molten weld. This is due to absence of controlling welding penetration position, depending on the required size of the angle of the setting. In addition, the optimum welding conditions must be considered while selecting, the correlation between these variables and the systematic correlation has not yet been identified. Therefore, in most welded pipe root-pass weld solely depends on the experience of workers in relation to secure a stable weld quality. In this study, automation welding system is implemented to select a suitable root-pass STT (Surface Tension Transfer) welding method using the optimal welding conditions. To successfully accomplish this objective, there were various welding conditions used for welding experiment to confirm that the assessment required for construction through the pipe and automatic welding process is proposed to optimize this plan.

Neuro-Fuzzy Diagnosis System for the Welding Condition of the CAL Recess (CAL공정내 용접상태에 대한 뉴로-퍼지 진단시스템)

  • Kim, Kyong-Min;Kim, Yi-Gon;Park, Joong-Jo;Song, Myung-Hyun;Choi, Nam-Sup;Jung, Yang-Hee;Lee, Bhum;Bae, Young-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.642-646
    • /
    • 2000
  • The use of neural-fuzzy system to model mesh seam welding is described in this paper. Conventional, automated process generally involves sophisticated sensing and control techniques applied to various processing parameters. Welding parameters affecting quality include the arc voltage, the welding current torch travel speed and the pressure and so on. The relationship between the welding parameters and weld quality is not a direct one, md' in addition, the effect of the weld parameter variables are not independent of the each other. The effectiveness of the proposed neuro-fuzzy algorithms is demonstrated by computer simulations.

  • PDF

Residual Stress of the Lower Control Arm Subjected to Cyclic Loading (변동하중을 받는 Lower Control Arm의 잔류응력 변화)

  • Kim Gi-Hoon;Kang Woo-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.602-608
    • /
    • 2006
  • Vehicle components such as lower control arm are usually affected by heat during the welding process. As a result, residual stress is generated, which has much effect on mechanical performances such as crashworthiness and durability. In this study, the residual stress in lower control arm has been measured by the x-ray diffraction method and been analyzed by finite element methods. Heat transfer during seam weld process has been calculated and used in calculating thermal deformation with temperature dependent material properties. High residual stress has been found at vertical wall both by measurement and simulation. The simulation also showed the residual stress re-distribution when the component is subjected to cyclic loading condition.

Friction Welding of Inconel 713C and SCM 440 (Inconel 713C와 SCM 440의 마찰용접)

  • 조현수;서성재
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.78-84
    • /
    • 1997
  • Friction welding technique was studied to weld the turbine wheel and shaft of a turbocharger. The welding parameters were selected to investigate the effects of variables on welding quality of Inconel 713C and SCM 440. Experimental results showed that the turbine wheel and shaft could be successfully welded by friction welding. The heat affected zone was identified to be 2 mm from the weld seam. After welding, the hardness profile was found to have sudden increase and decrease for inconel 713C and SCM 440 respectively. Tensile strength of welded specimens was higher than the required strength for all of the studied welding parameters. The central portion of fracture surfaces by bending had no defects such as crack.

  • PDF