DOI QR코드

DOI QR Code

The effect of mechanical inhomogeneity in microzones of welded joints on CTOD fracture toughness of nuclear thick-walled steel

  • Long Tan (College of Electromechanical Engineering, Qingdao University of Science and Technology) ;
  • Songyang Li (College of Electromechanical Engineering, Qingdao University of Science and Technology) ;
  • Liangyin Zhao (College of Electromechanical Engineering, Qingdao University of Science and Technology) ;
  • Lulu Wang (College of Electromechanical Engineering, Qingdao University of Science and Technology) ;
  • Xiuxiu Zhao (College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology)
  • Received : 2023.04.14
  • Accepted : 2023.07.24
  • Published : 2023.11.25

Abstract

This study employs the microshear test method to examine the local mechanical properties of narrow-gap welded joints, revealing the mechanical inhomogeneity by evaluating the microshear strength, stress-strain curves, and failure strain. On this basis, the influence of weld joints micromechanical inhomogeneity on the crack tip opening displacement (CTOD) fracture toughness is investigated. From the root weld layer to the cover weld layer, the fracture toughness at the center of the weld seam demonstrates an increasing trend, with the experimental and calculated CTOD values showing a good correspondence. The microproperties of the welded joints significantly impact the load-bearing capacity and fracture toughness. During the deformation process of the "low-matching" microregions, the plastic zone expansion is hindered by the surrounding microregion strength constraints, thus reducing the fracture toughness. In contrast, during the deformation of the "high-matching" microregions, the surrounding microregions absorb some of the loading energy, partially releasing the concentrated stress at the crack tip, which in turn increases the fracture toughness.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 52005276) and Shandong Province Natural Science Foundation (Grant Nos. ZR2020QE174 and ZR2022ME201).

References

  1. Z. Liu, X. Guo, H. Cui, F. Li, F. Lu, Role of misorientation in fatigue crack growth behavior for NG-TIG welded joint of Ni-based alloy, Mater. Sci. Eng. 710 (2018) 151-163. https://doi.org/10.1016/j.msea.2017.10.090
  2. T. Andriollo, Y. Zhang, S. Faester, V. Kouznetsova, Analysis of the correlation between micro-mechanical fields and fatigue crack propagation path in nodular cast iron, Acta Mater. 188 (2020) 302-314. https://doi.org/10.1016/j.actamat.2020.02.026
  3. S. Tanaka, T. Kawahara, H. Okada, Study on crack propagation simulation of surface crack in welded joint structure, Mar. Struct. 39 (2014) 315-334. https://doi.org/10.1016/j.marstruc.2014.08.001
  4. L. Luo, Y. Huang, F.Z. Xuan, Deflection behaviour of corrosion crack growth in the heat affected zone of CrNiMoV steel welded joint, Corrosion Sci. 121 (2017) 11-21. https://doi.org/10.1016/j.corsci.2017.01.020
  5. F.V. Antunes, R. Branco, P. Prates, C. Gardin, C. Sarrazin-Baudoux, Fatigue crack growth versus plastic CTOD in the 304L stainless steel, Eng. Fract. Mech. 214 (2019) 487-503. https://doi.org/10.1016/j.engfracmech.2019.04.013
  6. J.F. Sola, R. Kelton, E.I. Meletis, H. Huang, A surface roughness based damage index for predicting future propagation path of microstructure-sensitive crack in pure nickel, Int. J. Fatig. 122 (2019) 164-172. https://doi.org/10.1016/j.ijfatigue.2019.01.012
  7. Y. Zhang, J. Shuai, Z. Lv, T. Zhang, Study on fracture behavior of pipeline girth weld based on CTOD-Am method and Gurson ductile damage model, Theor. Appl. Fract. Mech. 123 (2023), 103692.
  8. X.P. Zhou, L.F. Wang, Investigating propagation path of interface crack by the field-enriched finite element method, Appl. Math. Model. 99 (2021) 81-105. https://doi.org/10.1016/j.apm.2021.06.012
  9. T. Kawabata, T. Tagawa, Y. Kayamori, M. Ohata, Y. Yamashita, M. Kinefuchi, H. Yoshinari, S. Aihara, F. Minami, H. Mimura, Y. Hagihara, Applicability of new CTOD calculation formula to various a0/W conditions and B×B configuration, Eng. Fract. Mech. 179 (2017) 375-390. https://doi.org/10.1016/j.engfracmech.2017.03.027
  10. K. Han, J. Shuai, X. Deng, L. Kong, X. Zhao, M. Sutton, The effect of constraint on CTOD fracture toughness of API X65 steel, Eng. Fract. Mech. 124 (2014) 167-181. https://doi.org/10.1016/j.engfracmech.2014.04.014
  11. C. Duan, S. Zhang, Further investigation of J-CTOD relationship for clamped SET specimens based on finite element analyses-Part I: homogeneous materials, Theor. Appl. Fract. Mech. 121 (2022), 103523.
  12. S.H. Afzalimir, V.S. Barbosa, C. Ruggieri, Evaluation of CTOD resistance curves in clamped SE (T) specimens with weld centerline cracks, Eng. Fract. Mech. 240 (2020), 107326.
  13. C. Shao, F. Lu, H. Cui, Z. Li, Characterization of high-gradient welded microstructure and its failure mode in fatigue test, Int. J. Fatig. 113 (2018) 1-10. https://doi.org/10.1016/j.ijfatigue.2018.03.029
  14. M.L. Zhu, F.Z. Xuan, Correlation between microstructure, hardness and strength in HAZ of dissimilar welds of rotor steels, Mater. Sci. Eng. 527 (16-17) (2010) 4035-4042. https://doi.org/10.1016/j.msea.2010.03.066
  15. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Homogenization of P91 weldments using varying normalizing and tempering treatment, Mater. Sci. Eng. 710 (2018) 86-101. https://doi.org/10.1016/j.msea.2017.10.086
  16. H.K. Pabandi, H.R. Jashnani, M. Paidar, Effect of precipitation hardening heat treatment on mechanical and microstructure features of dissimilar friction stir welded AA2024-T6 and AA6061-T6 alloys, J. Manuf. Process. 31 (2018) 214-220. https://doi.org/10.1016/j.jmapro.2017.11.019
  17. D. Hu, Q. Yang, H. Liu, J. Mao, F. Meng, Y. Wang, M. Ren, R. Wang, Crack closure effect and crack growth behavior in GH2036 superalloy plates under combined high and low cycle fatigue, Int. J. Fatig. 95 (2017) 90-103. https://doi.org/10.1016/j.ijfatigue.2016.10.011
  18. B. Schramm, H.A. Richard, G. Kullmer, Theoretical, experimental and numerical investigations on crack growth in fracture mechanical graded structures, Eng. Fract. Mech. 167 (2016) 188-200. https://doi.org/10.1016/j.engfracmech.2016.05.003
  19. H.S. Zhao, S.T. Lie, Y. Zhang, Stress intensity factors for semi-elliptical surface cracks in plate-to-plate butt welds with parallel misalignment of same thickness, Mar. Struct. 53 (2017) 148-163. https://doi.org/10.1016/j.marstruc.2017.02.005
  20. Q. Guo, F. Lu, H. Cui, R. Yang, X. Liu, X. Tang, Modelling the crack propagation behavior in 9Cr/CrMoV welds, J. Mater. Process. Technol. 226 (2015) 125-133. https://doi.org/10.1016/j.jmatprotec.2015.06.004
  21. S. Kumar, C. Pandey, A. Goyal, A microstructural and mechanical behavior study of heterogeneous P91 welded joint, Int. J. Pres. Ves. Pip. 185 (2020), 104128.
  22. H. Liu, J. Song, H. Wang, Y. Du, K. Yang, Y. Liu, Q. Wang, Q. Chen, Heterogeneous microstructure and associated mechanical properties of thick electron beam welded Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy joint, Mater. Sci. Eng. 825 (2021), 141850.
  23. W. Wang, T.G. Liu, X.Y. Cao, Y.H. Lu, T. Shoji, In-situ SEM study of crack initiation and propagation behavior in a dissimilar metal welded joint, Mater. Sci. Eng. 729 (2018) 331-339. https://doi.org/10.1016/j.msea.2018.05.077
  24. Y. Fan, B.L. Yang, T.G. Liu, Y.H. Lu, Effect of inhomogeneous microstructure on the deformation and fracture mechanisms of 316LN stainless steel multi-pass weld joint using small punch test, J. Nucl. Mater. 538 (2020), 152239.
  25. H. Dong, Y. Li, P. Li, X. Hao, Y. Xia, G. Yang, Inhomogeneous microstructure and mechanical properties of rotary friction welded joints between 5052 aluminum alloy and 304 stainless steel, J. Mater. Process. Technol. 272 (2019) 17-27. https://doi.org/10.1016/j.jmatprotec.2019.04.039
  26. Y. Wan, W. Jiang, W. Wei, X. Xie, M. Song, G. Xu, X. Xie, X. Zhai, Characterization of inhomogeneous microstructure and mechanical property in an ultra-thick duplex stainless steel welding joint, Mater. Sci. Eng. 822 (2021), 141640.
  27. L. Tan, J. Zhang, Effect of pass increasing on interpass stress evolution in nuclear rotor pipes, Sci. Technol. Weld. Join. 21 (7) (2016) 585-591. https://doi.org/10.1179/1362171815Y.0000000093
  28. X.P. Zhang, L. Dorn, Estimation of the local mechanical properties of pipeline steels and welded joints by use of the microshear test method, Int. J. Pres. Ves. Pip. 75 (1) (1998) 37-42. https://doi.org/10.1016/S0308-0161(98)00011-8
  29. G.L. Hankin, M.B. Toloczko, M.L. Hamilton, R.G. Faulkner, Validation of the shear punch-tensile correlation technique using irradiated materials, J. Nucl. Mater. 258-263 (1998) 1651-1656. https://doi.org/10.1016/S0022-3115(98)00203-7