• Title/Summary/Keyword: weighted spaces

Search Result 155, Processing Time 0.021 seconds

COMMUTATORS OF THE MAXIMAL FUNCTIONS ON BANACH FUNCTION SPACES

  • Mujdat Agcayazi;Pu Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1391-1408
    • /
    • 2023
  • Let M and M# be Hardy-Littlewood maximal operator and sharp maximal operator, respectively. In this article, we present necessary and sufficient conditions for the boundedness properties for commutator operators [M, b] and [M#, b] in a general context of Banach function spaces when b belongs to BMO(?n) spaces. Some applications of the results on weighted Lebesgue spaces, variable Lebesgue spaces, Orlicz spaces and Musielak-Orlicz spaces are also given.

TOEPLITZ OPERATORS ON BLOCH-TYPE SPACES AND A GENERALIZATION OF BLOCH-TYPE SPACES

  • Kang, Si Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.439-454
    • /
    • 2014
  • We deal with the boundedness of the n-th derivatives of Bloch-type functions and Toeplitz operators and give a relationship between Bloch-type spaces and ranges of Toeplitz operators. Also we prove that the vanishing property of ${\parallel}uk^{\alpha}_z{\parallel}_{s,{\alpha}}$ on the boundary of $\mathbb{D}$ implies the compactness of Toeplitz operators and introduce a generalization of Bloch-type spaces.

LIPSCHITZ TYPE CHARACTERIZATIONS OF HARMONIC BERGMAN SPACES

  • Nam, Kyesook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1277-1288
    • /
    • 2013
  • Wulan and Zhu [16] have characterized the weighted Bergman space in the setting of the unit ball of $C^n$ in terms of Lipschitz type conditions in three different metrics. In this paper, we study characterizations of the harmonic Bergman space on the upper half-space in $R^n$. Furthermore, we extend harmonic analogues in the setting of the unit ball to the full range 0 < p < ${\infty}$. In addition, we provide the application of characterizations to showing the boundedness of a mapping defined by a difference quotient of harmonic function.

ESSENTIAL NORM OF THE COMPOSITION OPERATORS BETWEEN BERGMAN SPACES OF LOGARITHMIC WEIGHTS

  • Kwon, Ern Gun;Lee, Jinkee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.187-198
    • /
    • 2017
  • We obtain some necessary and sufficient conditions for the boundedness of the composition operators between weighted Bergman spaces of logarithmic weights. In terms of the conditions for the boundedness, we compute the essential norm of the composition operators.

BOUNDEDNESS AND COMPACTNESS OF SOME TOEPLITZ OPERATORS

  • Kang, Si Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.467-475
    • /
    • 2013
  • We consider the problem to determine when a Toeplitz operator is bounded on weighted Bergman spaces. We introduce some set CG of symbols and we prove that Toeplitz operators induced by elements of CG are bounded and characterize when Toeplitz operators are compact and show that each element of CG is related with a Carleson measure.

EMBEDDING OF WEIGHTED $L^p$ SPACES AND THE $\bar{\partial}$-PROBLEM

  • Cho, Hong-Rae
    • East Asian mathematical journal
    • /
    • v.19 no.1
    • /
    • pp.73-80
    • /
    • 2003
  • Let D be a bounded domain in $\mathbb{C}^n$ with $C^2$ boundary. In this paper, we prove the following inequality $${\parallel}u{\parallel}_{p_2,{\alpha}_2}{\lesssim}{\parallel}u{\parallel}_{p_1,{\alpha}_1}+{\parallel}\bar{\partial}u{\parallel}_{p_1,{\alpha}_1+p_1}/2$$, where $1{\leq}p_1{\leq}p_2<\infty,\;{\alpha}_j>0,(n+{\alpha}_1)/p_1=(n+{\alpha}_1)/p_1=(n+{\alpha}_2)/p_2$, and $1/p_2{\geq}1/p_1-1/2n$.

  • PDF

BOUNDED LINEAR FUNCTIONAL ON L1a(B) RELATED WITH $\mathcal{B}_q$q

  • Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.14 no.2
    • /
    • pp.37-46
    • /
    • 2001
  • In this paper, weighted Bloch spaces $\mathcal{B}_q$ are considered on the open unit ball in $\mathbb{C}^n$. In this paper, we will show that every Bloch function in $B_q$ induces a bounded linear functional on $L^1_a(\mathcal{B})$.

  • PDF