EMBEDDING OF WEIGHTED $L^p$ SPACES AND THE $\bar{\partial}$-PROBLEM

  • Cho, Hong-Rae (Department of Mathematics Pusan National University)
  • Published : 2003.06.30

Abstract

Let D be a bounded domain in $\mathbb{C}^n$ with $C^2$ boundary. In this paper, we prove the following inequality $${\parallel}u{\parallel}_{p_2,{\alpha}_2}{\lesssim}{\parallel}u{\parallel}_{p_1,{\alpha}_1}+{\parallel}\bar{\partial}u{\parallel}_{p_1,{\alpha}_1+p_1}/2$$, where $1{\leq}p_1{\leq}p_2<\infty,\;{\alpha}_j>0,(n+{\alpha}_1)/p_1=(n+{\alpha}_1)/p_1=(n+{\alpha}_2)/p_2$, and $1/p_2{\geq}1/p_1-1/2n$.

Keywords