• Title/Summary/Keyword: weighted similarity

Search Result 129, Processing Time 0.03 seconds

Weighted Local Naive Bayes Link Prediction

  • Wu, JieHua;Zhang, GuoJi;Ren, YaZhou;Zhang, XiaYan;Yang, Qiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.914-927
    • /
    • 2017
  • Weighted network link prediction is a challenge issue in complex network analysis. Unsupervised methods based on local structure are widely used to handle the predictive task. However, the results are still far from satisfied as major literatures neglect two important points: common neighbors produce different influence on potential links; weighted values associated with links in local structure are also different. In this paper, we adapt an effective link prediction model-local naive Bayes model into a weighted scenario to address this issue. Correspondingly, we propose a weighted local naive Bayes (WLNB) probabilistic link prediction framework. The main contribution here is that a weighted cluster coefficient has been incorporated, allowing our model to inference the weighted contribution in the predicting stage. In addition, WLNB can extensively be applied to several classic similarity metrics. We evaluate WLNB on different kinds of real-world weighted datasets. Experimental results show that our proposed approach performs better (by AUC and Prec) than several alternative methods for link prediction in weighted complex networks.

Topic-based Multi-document Summarization Using Non-negative Matrix Factorization and K-means (비음수 행렬 분해와 K-means를 이용한 주제기반의 다중문서요약)

  • Park, Sun;Lee, Ju-Hong
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.4
    • /
    • pp.255-264
    • /
    • 2008
  • This paper proposes a novel method using K-means and Non-negative matrix factorization (NMF) for topic -based multi-document summarization. NMF decomposes weighted term by sentence matrix into two sparse non-negative matrices: semantic feature matrix and semantic variable matrix. Obtained semantic features are comprehensible intuitively. Weighted similarity between topic and semantic features can prevent meaningless sentences that are similar to a topic from being selected. K-means clustering removes noises from sentences so that biased semantics of documents are not reflected to summaries. Besides, coherence of document summaries can be enhanced by arranging selected sentences in the order of their ranks. The experimental results show that the proposed method achieves better performance than other methods.

Object Tracking with Histogram weighted Centroid augmented Siamese Region Proposal Network

  • Budiman, Sutanto Edward;Lee, Sukho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.156-165
    • /
    • 2021
  • In this paper, we propose an histogram weighted centroid based Siamese region proposal network for object tracking. The original Siamese region proposal network uses two identical artificial neural networks which take two different images as the inputs and decide whether the same object exist in both input images based on a similarity measure. However, as the Siamese network is pre-trained offline, it experiences many difficulties in the adaptation to various online environments. Therefore, in this paper we propose to incorporate the histogram weighted centroid feature into the Siamese network method to enhance the accuracy of the object tracking. The proposed method uses both the histogram information and the weighted centroid location of the top 10 color regions to decide which of the proposed region should become the next predicted object region.

Context-Weighted Metrics for Example Matching (문맥가중치가 반영된 문장 유사 척도)

  • Kim, Dong-Joo;Kim, Han-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.43-51
    • /
    • 2006
  • This paper proposes a metrics for example matching under the example-based machine translation for English-Korean machine translation. Our metrics served as similarity measure is based on edit-distance algorithm, and it is employed to retrieve the most similar example sentences to a given query. Basically it makes use of simple information such as lemma and part-of-speech information of typographically mismatched words. Edit-distance algorithm cannot fully reflect the context of matched word units. In other words, only if matched word units are ordered, it is considered that the contribution of full matching context to similarity is identical to that of partial matching context for the sequence of words in which mismatching word units are intervened. To overcome this drawback, we propose the context-weighting scheme that uses the contiguity information of matched word units to catch the full context. To change the edit-distance metrics representing dissimilarity to similarity metrics, to apply this context-weighted metrics to the example matching problem and also to rank by similarity, we normalize it. In addition, we generalize previous methods using some linguistic information to one representative system. In order to verify the correctness of the proposed context-weighted metrics, we carry out the experiment to compare it with generalized previous methods.

Feature matching toy Omnidirectional Image based on Singular Value Decomposition

  • Kim, Do-Yoon;Lee, Young-Jin;Myung jin Chung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.98.2-98
    • /
    • 2002
  • $\textbullet$ Omnidirectional feature matching $\textbullet$ SVD-based matching algorithm $\textbullet$ Using SSD instead of the zero-mean correlation $\textbullet$ The similarity with the Gaussian weighted $\textbullet$ Low computational cost $\textbullet$ It describes the similarity of the matched pairs in omnidirectional images.

  • PDF

A Tree-Compare Algorithm for Similarity Evaluation (유사도 평가를 위한 트리 비교 알고리즘)

  • Kim, Young-Chul;Yoo, Chae-Woo
    • The KIPS Transactions:PartA
    • /
    • v.11A no.2
    • /
    • pp.159-164
    • /
    • 2004
  • In the previous researches, tree comparison methods are almost studied in comparing weighted or labeled tree(decorated tree). But in this paper, we propose a tree comparison and similarity evaluation algorithm can be applied to comparison of two normal trees. The algorithm converts two trees into node string using unparser, evaluates similarity and finally return similarity value from 0.0 to 1.0. In the experiment part of this paper, we visually presented matched nodes and unmatched nodes between two trees. By using this tree similarity algorithm, we can not only evaluate similarity between two specific programs or documents but also detect duplicated code.

Automatic Music Summarization Using Similarity Measure Based on Multi-Level Vector Quantization (다중레벨 벡터양자화 기반의 유사도를 이용한 자동 음악요약)

  • Kim, Sung-Tak;Kim, Sang-Ho;Kim, Hoi-Rin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2E
    • /
    • pp.39-43
    • /
    • 2007
  • Music summarization refers to a technique which automatically extracts the most important and representative segments in music content. In this paper, we propose and evaluate a technique which provides the repeated part in music content as music summary. For extracting a repeated segment in music content, the proposed algorithm uses the weighted sum of similarity measures based on multi-level vector quantization for fixed-length summary or optimal-length summary. For similarity measures, count-based similarity measure and distance-based similarity measure are proposed. The number of the same codeword and the Mahalanobis distance of features which have same codeword at the same position in segments are used for count-based and distance-based similarity measure, respectively. Fixed-length music summary is evaluated by measuring the overlapping ratio between hand-made repeated parts and automatically generated ones. Optimal-length music summary is evaluated by calculating how much automatically generated music summary includes repeated parts of the music content. From experiments we observed that optimal-length summary could capture the repeated parts in music content more effectively in terms of summary length than fixed-length summary.

Relevance Feedback for Content Based Retrieval Using Fuzzy Integral (퍼지적분을 이용한 내용기반 검색 사용자 의견 반영시스템)

  • Young Sik Choi
    • Journal of Internet Computing and Services
    • /
    • v.1 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • Relevance feedback is a technique to learn the user's subjective perception of similarity between images, and has recently gained attention in Content Based Image Retrieval. Most relevance feedback methods assume that the individual features that are used in similarity judgments do not interact with each other. However, this assumption severely limits the types of similarity judgments that can be modeled In this paper, we explore a more sophisticated model for similarity judgments based on fuzzy measures and the Choquet Integral, and propose a suitable algorithm for relevance feedback, Experimental results show that the proposed method is preferable to traditional weighted- average techniques.

  • PDF

Entropy-based Similarity Measures for Memory-based Collaborative Filtering

  • Kwon, Hyeong-Joon;Latchman, Haniph
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.5 no.2
    • /
    • pp.5-10
    • /
    • 2013
  • We proposed a novel similarity measure using weighted difference entropy (WDE) to improve the performance of the CF system. The proposed similarity metric evaluates the entropy with a preference score difference between the common rated items of two users, and normalizes it based on the Gaussian, tanh and sigmoid function. We showed significant improvement of experimental results and environments. These experiments involved changing the number of nearest neighborhoods, and we presented experimental results for two data sets with different characteristics, and results for the quality of recommendation.