• Title/Summary/Keyword: weighted matching

Search Result 128, Processing Time 0.029 seconds

Multiple Templates and Weighted Correlation Coefficient-based Object Detection and Tracking for Underwater Robots (수중 로봇을 위한 다중 템플릿 및 가중치 상관 계수 기반의 물체 인식 및 추종)

  • Kim, Dong-Hoon;Lee, Dong-Hwa;Myung, Hyun;Choi, Hyun-Taek
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.142-149
    • /
    • 2012
  • The camera has limitations of poor visibility in underwater environment due to the limited light source and medium noise of the environment. However, its usefulness in close range has been proved in many studies, especially for navigation. Thus, in this paper, vision-based object detection and tracking techniques using artificial objects for underwater robots have been studied. We employed template matching and mean shift algorithms for the object detection and tracking methods. Also, we propose the weighted correlation coefficient of adaptive threshold -based and color-region-aided approaches to enhance the object detection performance in various illumination conditions. The color information is incorporated into the template matched area and the features of the template are used to robustly calculate correlation coefficients. And the objects are recognized using multi-template matching approach. Finally, the water basin experiments have been conducted to demonstrate the performance of the proposed techniques using an underwater robot platform yShark made by KORDI.

Estimation of Geometric Mean for k Exponential Parameters Using a Probability Matching Prior

  • Kim, Hea-Jung;Kim, Dae Hwang
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • In this article, we consider a Bayesian estimation method for the geometric mean of $textsc{k}$ exponential parameters, Using the Tibshirani's orthogonal parameterization, we suggest an invariant prior distribution of the $textsc{k}$ parameters. It is seen that the prior, probability matching prior, is better than the uniform prior in the sense of correct frequentist coverage probability of the posterior quantile. Then a weighted Monte Carlo method is developed to approximate the posterior distribution of the mean. The method is easily implemented and provides posterior mean and HPD(Highest Posterior Density) interval for the geometric mean. A simulation study is given to illustrates the efficiency of the method.

Fast Hierarchical Block Matching Algorithm by Adaptively Using Spatial Correlation of Motion Field (운동영역의 상관성을 선택적으로 이용한 고속 움직임 추정 기법)

  • 임경원;송병철;나종범
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.217-220
    • /
    • 1996
  • This paper describes a new hierarchial block matching algorithm especially appropriate for a large search area. The proposed algorithm consists of higher level search for an initial motion vector estimate by using a new matching criterion over the evenly subsampled search points, and lower level search for the final motion vector refinement. In the higher level matching criterion, mean absolute differences at the search points (or motion vector candidates) similar to motion vectors of causally neighboring blocks, are weighted properly so that these points can have a higher chance to being selected. The proposed algorithm outperforms existing hierarchical block matching algorithms, and its computational regularity makes hardware implementation simple.

  • PDF

Social-Aware Resource Allocation Based on Cluster Formation and Matching Theory in D2D Underlaying Cellular Networks

  • Zhuang, Wenqin;Chen, Mingkai;Wei, Xin;Li, Haibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.1984-2002
    • /
    • 2020
  • With the appearance of wireless spectrum crisis in traditional cellular network, device-to-device (D2D) communication has been regarded as a promising solution to ease heavy traffic burden by enabling precise content delivery among mobile users. However, due to the channel sharing, the interference between D2D and cellular users can affect the transmission rate and narrow the throughput in the network. In this paper, we firstly present a weighted interference minimization cluster formation model involving both social attribute and physical closeness. The weighted-interference, which is evaluated under the susceptible-infected(SI) model, is utilized to gather user in social and physical proximity. Then, we address the cluster formation problem via spectrum clustering with iterative operation. Finally, we propose the stable matching theory algorithm in order to maximize rate oriented to accomplish the one-to-one resource allocation. Numerical results show that our proposed scheme acquires quite well clustering effect and increases the accumulative transmission rate compared with the other two advanced schemes.

A Reserved Band-Based Probabilistic Cell Scheduling Algorithm for Input Buffered ATM Switches (입력 단 저장 방식 ATM 스위치의 예약 대역폭에 기반 한 셀 스케쥴링 알고리듬)

  • 이영근;김진상;김진상
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.114-121
    • /
    • 2000
  • The problem of an input-buffered switch is the HOL(head-of-line) blocking which limits the maximum throughput but it is easy to implement in hardware. However, HOL blocking can be eliminated using aVOQ(virtual-output-queueing) technique. 0 this paper, we propose a new cell-scheduling algorithm for aninput-buffered ATM switch. The proposed algorithm, called PPIM(Probabilistic Parallel Iterative Matching), imposesa weight to every request based on the reserved bandwidth. It is shown that the input-buffered ATM switch withthe proposed PPIM algorithm not only provides high throughput and low delay but it also reduces the jitter,compared with the existing WPIM(Weighted PIM).

  • PDF

Local Stereo Matching Method based on Improved Matching Cost and Disparity Map Adjustment (개선된 정합 비용 및 시차 지도 재생성 기반 지역적 스테레오 정합 기법)

  • Kang, Hyun Ryun;Yun, In Yong;Kim, Joong Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.65-73
    • /
    • 2017
  • In this paper, we propose a stereo matching method to improve the image quality at the hole and the disparity discontinuity regions. The stereo matching method extracts disparity map finding corresponding points between stereo image pair. However conventional stereo matching methods have a problem about the tradeoff between accuracy and precision with respect to the length of the baseline of the stereo image pair. In addition, there are hole and disparity discontinuity regions which are caused by textureless regions and occlusion regions of the stereo image pair. The proposed method extracts initial disparity map improved at disparity discontinuity and miss-matched regions using modified AD-Census-Gradient method and adaptive weighted cost aggregation. And then we conduct the disparity map refinement to improve at miss-matched regions, while also improving the accuracy of the image. Experimental results demonstrate that the proposed method produces high-quality disparity maps by successfully improving miss-matching regions and accuracy while maintaining matching performance compared to existing methods which produce disparity maps with high matching performance. And the matching performance is increased about 3.22(%) compared to latest stereo matching methods in case of test images which have high error ratio.

Finger Vein Recognition based on Matching Score-Level Fusion of Gabor Features

  • Lu, Yu;Yoon, Sook;Park, Dong Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.2
    • /
    • pp.174-182
    • /
    • 2013
  • Most methods for fusion-based finger vein recognition were to fuse different features or matching scores from more than one trait to improve performance. To overcome the shortcomings of "the curse of dimensionality" and additional running time in feature extraction, in this paper, we propose a finger vein recognition technology based on matching score-level fusion of a single trait. To enhance the quality of finger vein image, the contrast-limited adaptive histogram equalization (CLAHE) method is utilized and it improves the local contrast of normalized image after ROI detection. Gabor features are then extracted from eight channels based on a bank of Gabor filters. Instead of using the features for the recognition directly, we analyze the contributions of Gabor feature from each channel and apply a weighted matching score-level fusion rule to get the final matching score, which will be used for the last recognition. Experimental results demonstrate the CLAHE method is effective to enhance the finger vein image quality and the proposed matching score-level fusion shows better recognition performance.

Improving Image Fingerprint Matching Accuracy Based on a Power Mask (파워마스크를 이용한 영상 핑거프린트 정합 성능 개선)

  • Seo, Jin Soo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • For a reliable fingerprinting system, improving fingerprint matching accuracy is crucial. In this paper, we try to improve a binary image fingerprint matching performance by utilizing auxiliary information, power mask, which is obtained while constructing fingerprint DB. The power mask is an expected robustness of each fingerprint bit. A caveat of the power mask is the increased storage cost of the fingerprint DB. This paper mitigates the problem by reducing the size of the power mask utilizing spatial correlation of an image. Experiments on a publicly-available image dataset confirmed that the power mask is effective in improving fingerprint matching accuracy.

Adaptive Hybrid Fingerprint Matching Method Based on Minutiae and Filterbank (특징점과 필터뱅크에 기반한 적응적 혼합형 지문정합 방법)

  • 정석재;박상현;문성림;김동윤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.959-967
    • /
    • 2004
  • Jain et al. proposed the hybrid matching method which was combined the minutia-based matching method and the filter-bank based matching method. And, their experimental results proved the hybrid matching method was more effective than each of them. However, this hybrid method cannot utilize each peculiar advantage of two methods. The reason is that it gets the matching score by simply summing up each weighted matching score after executing two methods individually. In this paper, we propose new hybrid matching method. It mixes two matching methods during the feature extraction process. This new hybrid method has lower ERR than the filter-bank based method and higher ERR than the minutia-based method. So, we propose the adaptive hybrid scoring method, which selects the matching score in order to preserve the characteristics of two matching methods. Using this method, we can get lower ERR than the hybrid matcher by Jain et al. Experimental results indicate that the proposed methods can improve the matching performance up to about 1% in ERR.

ORMN: A Deep Neural Network Model for Referring Expression Comprehension (ORMN: 참조 표현 이해를 위한 심층 신경망 모델)

  • Shin, Donghyeop;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.2
    • /
    • pp.69-76
    • /
    • 2018
  • Referring expressions are natural language constructions used to identify particular objects within a scene. In this paper, we propose a new deep neural network model for referring expression comprehension. The proposed model finds out the region of the referred object in the given image by making use of the rich information about the referred object itself, the context object, and the relationship with the context object mentioned in the referring expression. In the proposed model, the object matching score and the relationship matching score are combined to compute the fitness score of each candidate region according to the structure of the referring expression sentence. Therefore, the proposed model consists of four different sub-networks: Language Representation Network(LRN), Object Matching Network (OMN), Relationship Matching Network(RMN), and Weighted Composition Network(WCN). We demonstrate that our model achieves state-of-the-art results for comprehension on three referring expression datasets.