• Title/Summary/Keyword: weighted likelihood estimator

Search Result 20, Processing Time 0.02 seconds

Optimal Design for Locally Weighted Quasi-Likelihood Response Curve Estimator

  • Park, Dongryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.743-752
    • /
    • 2002
  • The estimation of the response curve is the important problem in the quantal bioassay. When we estimate the response curve, we determine the design points in advance of the experiment. Then naturally we have a question of which design would be optimal. As a response curve estimator, locally weighted quasi-likelihood estimator has several more appealing features than the traditional nonparametric estimators. The optimal design density for the locally weighted quasi-likelihood estimator is derived and its ability both in theoretical and in empirical point of view are investigated.

An approximate maximum likelihood estimator in a weighted exponential distribution

  • Lee, Jang-Choon;Lee, Chang-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.1
    • /
    • pp.219-225
    • /
    • 2012
  • We derive approximate maximum likelihood estimators of two parameters in a weighted exponential distribution, and derive the density function for the ratio Y=(X+Y) of two independent weighted exponential random variables X and Y, and then observe the skewness of the ratio density.

Negative Exponential Disparity Based Robust Estimates of Ordered Means in Normal Models

  • Bhattacharya, Bhaskar;Sarkar, Sahadeb;Jeong, Dong-Bin
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.371-383
    • /
    • 2000
  • Lindsay (1994) and Basu et al (1997) show that another density-based distance called the negative exponential disparity (NED) is an excellent competitor to the Hellinger distance (HD) in generating an asymptotically fully efficient and robust estimator. Bhattacharya and Basu (1996) consider estimation of the locations of several normal populations when an order relation between them is known to be true. They empirically show that the robust HD based weighted likelihood estimators compare favorably with the M-estimators based on Huber's $\psi$ function, the Gastworth estimator, and the trimmed mean estimator. In this paper we investigate the performance of the weighted likelihood estimator based on the NED as a robust alternative relative to that based on the HD. The NED based estimator is found to be quite competitive in the settings considered by Bhattacharya and Basu.

  • PDF

An Alternative Unit Root Test Statistic Based on Least Squares Estimator

  • Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.639-647
    • /
    • 2002
  • Efforts to obtain more power for unit root tests have continued. Pantula at el.(1994) compared empirical powers of several unit root test statistics and addressed that the weighted symmetric estimator(WSE) and the unconditional maximum likelihood estimator(UMLE) are the best among them. One can easily see that the powers of these two statistics are almost the same. In this paper we explain a connection between WSE and UMLE and suggest a unit root test statistic which may explain the connection between them.

Better Estimators of Multiple Poisson Parameters under Weighted Loss Function

  • Kim, Jai-Young
    • Journal of the military operations research society of Korea
    • /
    • v.11 no.2
    • /
    • pp.69-82
    • /
    • 1985
  • In this study, we consider the simultaneous estimation of the parameters of the distribution of p independent Poisson random variables using the weighted loss function. The relation between the estimation under the weighted loss function and the case when more than one observation is taken from some population is studied. We derive an estimator which dominates Tsui and Press's estimator when certain conditions hold. We also derive an estimator which dominates the maximum likelihood estimator(MLE) under the various loss function. The risk performances of proposed estimators are compared to that of MLE by computer simulation.

  • PDF

On the Effect of Estimated Mean for the Weighted Symmetric Estimator

  • Key Il Shin;Hee Jeong Kang
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.903-909
    • /
    • 1997
  • The ordinary least squares estimator and the corresponding pivotal statistics have been widely used for the unit test. Recently several test criteria based on maximum likelihood estimators and weighted symmetric estimator have been proposed for testing the unit root hypothesis in the autoregressive processes. Pantula at el. (1994) showed that the weighted symmetric estimator has good power properties. In this article we use an adjusted estimator for mean in the model when we use weighted symmetric estimator. A simulation study shows that for the small samples, this new test criterion has better power properties than the weighted symmetric estimator.

  • PDF

A COMPARATIVE EVALUATION OF THE ESTIMATORS OF THE 2-PARAMETER GENERALIZED PARETO DISTRIBUTION

  • Singh, V.P.;Ahmad, M.;Sherif, M.M.
    • Water Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.155-173
    • /
    • 2003
  • Parameters and quantiles of the 2-parameter generalized Pareto distribution were estimated using the methods of regular moments, modified moments, probability weighted moments, linear moments, maximum likelihood, and entropy for Monte Carlo-generated samples. The performance of these seven estimators was statistically compared, with the objective of identifying the most robust estimator. It was found that in general the methods of probability-weighted moments and L-moments performed better than the methods of maximum likelihood estimation, moments and entropy, especially for smaller values of the coefficient of variation and probability of exceedance.

  • PDF

Improved Single-Tone Frequency Estimation by Averaging and Weighted Linear Prediction

  • So, Hing Cheung;Liu, Hongqing
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.27-31
    • /
    • 2011
  • This paper addresses estimating the frequency of a cisoid in the presence of white Gaussian noise, which has numerous applications in communications, radar, sonar, and instrumentation and measurement. Due to the nonlinear nature of the frequency estimation problem, there is threshold effect, that is, large error estimates or outliers will occur at sufficiently low signal-to-noise ratio (SNR) conditions. Utilizing the ideas of averaging to increase SNR and weighted linear prediction, an optimal frequency estimator with smaller threshold SNR is developed. Computer simulations are included to compare its mean square error performance with that of the maximum likelihood (ML) estimator, improved weighted phase averager, generalized weighted linear predictor, and single weighted sample correlator as well as Cramer-Rao lower bound. In particular, with smaller computational requirement, the proposed estimator can achieve the same threshold and estimation performance of the ML method.

Logistic Regression for Retrospective Studies

  • Shin, Mi-Young
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.4
    • /
    • pp.111-119
    • /
    • 1994
  • We consider logistic models based on retrospective, case-control data with stratified samples and study the Weighted Exogeneous Sampling Maximum Likelihood (WESMU) We develop a consistent estimator of the asymptotic covariance matrix of the WESML estimator.

  • PDF

Estimation of the Change Point in Monitoring the Mean of Autocorrelated Processes

  • Lee, Jae-Heon;Han, Jung-Hee;Jung, Sang-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.155-167
    • /
    • 2007
  • Knowing the time of the process change could lead to quicker identification of the responsible special cause and less process down time, and it could help to reduce the probability of incorrectly identifying the special cause. In this paper, we propose the maximum likelihood estimator (MLE) for the process change point when a control chart is used in monitoring the mean of a process in which the observations can be modeled as an AR(1) process plus an additional random error. The performance of the proposed MLE is compared to the performance of the built-in estimator when they are used in EWMA charts based on the residuals. The results show that the proposed MLE provides good performance in terms of both accuracy and precision of the estimator.