• Title/Summary/Keyword: weighted algorithm

Search Result 1,102, Processing Time 0.026 seconds

A new hybrid meta-heuristic for structural design: ranked particles optimization

  • Kaveh, A.;Nasrollahi, A.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.405-426
    • /
    • 2014
  • In this paper, a new meta-heuristic algorithm named Ranked Particles Optimization (RPO), is presented. This algorithm is not inspired from natural or physical phenomena. However, it is based on numerous researches in the field of meta-heuristic optimization algorithms. In this algorithm, like other meta-heuristic algorithms, optimization process starts with by producing a population of random solutions, Particles, located in the feasible search space. In the next step, cost functions corresponding to all random particles are evaluated and some of those having minimum cost functions are stored. These particles are ranked and their weighted average is calculated and named Ranked Center. New solutions are produced by moving each particle along its previous motion, the ranked center, and the best particle found thus far. The robustness of this algorithm is verified by solving some mathematical and structural optimization problems. Simplicity of implementation and reaching to desired solution are two main characteristics of this algorithm.

Fuzzy Combined Polynomial Neural Networks (퍼지 결합 다항식 뉴럴 네트워크)

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1315-1320
    • /
    • 2007
  • In this paper, we introduce a new fuzzy model called fuzzy combined polynomial neural networks, which are based on the representative fuzzy model named polynomial fuzzy model. In the design procedure of the proposed fuzzy model, the coefficients on consequent parts are estimated by using not general least square estimation algorithm that is a sort of global learning algorithm but weighted least square estimation algorithm, a sort of local learning algorithm. We are able to adopt various type of structures as the consequent part of fuzzy model when using a local learning algorithm. Among various structures, we select Polynomial Neural Networks which have nonlinear characteristic and the final result of which is a complex mathematical polynomial. The approximation ability of the proposed model can be improved using Polynomial Neural Networks as the consequent part.

Enhancing TCP Performance to Persistent Packet Reordering

  • Leung Ka-Cheong;Ma Changming
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.385-393
    • /
    • 2005
  • In this paper, we propose a simple algorithm to adaptively adjust the value of dupthresh, the duplicate acknowledgement threshold that triggers the transmission control protocol (TCP) fast retransmission algorithm, to improve the TCP performance in a network environment with persistent packet reordering. Our algorithm uses an exponentially weighted moving average (EWMA) and the mean deviation of the lengths of the reordering events reported by a TCP receiver with the duplicate selective acknowledgement (DSACK) extension to estimate the value of dupthresh. We also apply an adaptive upper bound on dupthresh to avoid the retransmission timeout events. In addition, our algorithm includes a mechanism to exponentially reduce dupthresh when the retransmission timer expires. With these mechanisms, our algorithm is capable of converging to and staying at a near-optimal interval of dupthresh. The simulation results show that our algorithm improves the protocol performance significantly with minimal overheads, achieving a greater throughput and fewer false fast retransmissions.

Rate Proportional SCFQ Algorithm for High-Speed Packet-Switched Networks

  • Choi, Byung-Hwan;Park, Hong-Shik
    • ETRI Journal
    • /
    • v.22 no.3
    • /
    • pp.1-9
    • /
    • 2000
  • Self-Clocked Fair Queueing (SCFQ) algorithm has been considered as an attractive packet scheduling algorithm because of its implementation simplicity, but it has unbounded delay property in some input traffic conditions. In this paper, we propose a Rate Proportional SCFQ (RP-SCFQ) algorithm which is a rate proportional version of SCFQ. If any fair queueing algorithm can be categorized into the rate proportional class and input is constrained by a leaky bucket, its delay is bounded and the same as that of Weighted Fair Queueing (WFQ) which is known as an optimal fair queueing algorithm. RP-SCFQ calculates the timestamps of packets arriving during the transmission of a packet using the current value of system potential updated at every packet departing instant and uses a starting potential when it updates the system potential. By doing so, RP-SCFQ can have the rate proportional property. RP-SCFQ is appropriate for high-speed packet-switched networks since its implementation complexity is low while it guarantees the bounded delay even in the worst-case input traffic conditions.

  • PDF

A Weighted Block-by-Block Decoding Algorithm for CPM-QC-LDPC Code Using Neural Network

  • Xu, Zuohong;Zhu, Jiang;Zhang, Zixuan;Cheng, Qian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3749-3768
    • /
    • 2018
  • As one of the most potential types of low-density parity-check (LDPC) codes, CPM-QC-LDPC code has considerable advantages but there still exist some limitations in practical application, for example, the existing decoding algorithm has a low convergence rate and a high decoding complexity. According to the structural property of this code, we propose a new method based on a CPM-RID decoding algorithm that decodes block-by-block with weights, which are obtained by neural network training. From the simulation results, we can conclude that our proposed method not only improves the bit error rate and frame error rate performance but also increases the convergence rate, when compared with the original CPM-RID decoding algorithm and scaled MSA algorithm.

Design of Fuzzy-Neural Networks Structure using HCM and Optimization Algorithm (HCM 및 최적 알고리즘을 이용한 퍼지-뉴럴네트워크구조의 설계)

  • Yoon, Ki-Chang;Park, Byoung-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.654-656
    • /
    • 1998
  • This paper presents an optimal identification method of nonlinear and complex system that is based on fuzzy-neural network(FNN). The FNN used simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM Algorithm to find initial parameters of membership function. And then to obtain optimal parameters, we use the genetic algorithm. Genetic algorithm is a random search algorithm which can find the global optimum without converging to local optimum. The parameters such as membership functions, learning rates and momentum coefficients are easily adjusted using the genetic algorithms. Also, the performance index with weighted value is introduced to achieve a meaningful balance between approximation and generalization abilities of the model. To evaluate the performance of the FNN, we use the time series data for 9as furnace and the sewage treatment process.

  • PDF

Decentralized Moving Average Filtering with Uncertainties

  • Song, Il Young
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.418-422
    • /
    • 2016
  • A filtering algorithm based on the decentralized moving average Kalman filter with uncertainties is proposed in this paper. The proposed filtering algorithm presented combines the Kalman filter with the moving average strategy. A decentralized fusion algorithm with the weighted sum structure is applied to the local moving average Kalman filters (LMAKFs) of different window lengths. The proposed algorithm has a parallel structure and allows parallel processing of observations. Hence, it is more reliable than the centralized algorithm when some sensors become faulty. Moreover, the choice of the moving average strategy makes the proposed algorithm robust against linear discrete-time dynamic model uncertainties. The derivation of the error cross-covariances between the LMAKFs is the key idea of studied. The application of the proposed decentralized fusion filter to dynamic systems within a multisensor environment demonstrates its high accuracy and computational efficiency.

A Study on BSW Algorithm for WRR Implementation (WRR 구현을 위한 BSW 알고리즘 연구)

  • 조해성
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.3
    • /
    • pp.122-127
    • /
    • 2002
  • The Weighted Round Robin(na) discipline which is a sort of scheduling algorithm is quite simple and straightforward for handling multiple queues, and by Putting a different weight on each queue. In this paper, we propose new BSW structure, which can execute the WRR scheduling algorithm efficiently. Also, we develop a cell scheduling algorithm which is adapt in the new BSW structure. The Proposed BSW structure and the algorithm is capable of maintaining an allocated VC's weight correctly and decrease of average cell delay and maximum buffer length by serving other VC cell when empty in each VC queue. The proposed algorithm is a structure suitable for na implementation.

  • PDF

Two variations of cross-distance selection algorithm in hybrid sufficient dimension reduction

  • Jae Keun Yoo
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.179-189
    • /
    • 2023
  • Hybrid sufficient dimension reduction (SDR) methods to a weighted mean of kernel matrices of two different SDR methods by Ye and Weiss (2003) require heavy computation and time consumption due to bootstrapping. To avoid this, Park et al. (2022) recently develop the so-called cross-distance selection (CDS) algorithm. In this paper, two variations of the original CDS algorithm are proposed depending on how well and equally the covk-SAVE is treated in the selection procedure. In one variation, which is called the larger CDS algorithm, the covk-SAVE is equally and fairly utilized with the other two candiates of SIR-SAVE and covk-DR. But, for the final selection, a random selection should be necessary. On the other hand, SIR-SAVE and covk-DR are utilized with completely ruling covk-SAVE out, which is called the smaller CDS algorithm. Numerical studies confirm that the original CDS algorithm is better than or compete quite well to the two proposed variations. A real data example is presented to compare and interpret the decisions by the three CDS algorithms in practice.

The robustness of continuous self tuning controller for retarded system

  • Lee, Bongkuk;Huh, Uk Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1930-1933
    • /
    • 1991
  • In this paper, the robustness of self turning controller on the continuous time-delay system is investigated. The polynomial identification method using continuous time exponentially weighted least square algorithm is used for estimating the time.-delay system parameters. The pole-zero and pole placement method are adopted for the control algorithm. On considering the control weighting factor and reliability filter the effect of unmodeled dynamics of the plant are examined by the simulation.

  • PDF