• Title/Summary/Keyword: weight center movement

Search Result 123, Processing Time 0.021 seconds

중심이동을 이용한 추적제어에 관한 연구 (Tracking Control using Weight Center Movement)

  • 신승헌;이용태
    • 대한인간공학회지
    • /
    • 제19권2호
    • /
    • pp.47-61
    • /
    • 2000
  • To study the characteristic of the weight center control of humans, the tracking control capability of circular and wave motion by weight center movement was conducted by using the force platform. The control performance(the integrated value of the $|Object\;value(X)-Control\;Value(Y)|^{2}$) and control trace record was used to evaluate the individual performance characteristics. The size of the population for this study was 73, which consisted of engineering students, students majoring in taekwondo, students majoring in dance, all of which were in their twenties, and also people in their sixties. The results of this study indicate that the weight center control characteristics of humans can be represented by the evaluation method and values. People who were capable of tracking the object did not stop nor overshot the objective. In addition, habits or training characteristics and aging seemed to influence the performance of the subjects. In the future, development of different objectives for weight center control could be used to determine the severity of the disease of the subject and the effects of the treatment.

  • PDF

Effect on the Limit of Stability of the Lowered Center of Mass With a Weight Belt

  • Phan, Jimmy;Wakumoto, Kaylen;Chen, Jeffrey;Choi, Woochol Joseph
    • 한국전문물리치료학회지
    • /
    • 제27권2호
    • /
    • pp.155-161
    • /
    • 2020
  • Background: The consequences of falls are often debilitating, and prevention is important. In theory, the lower the center of mass (COM), the greater postural stability during standing, and a weight belt at the waist level may help to lower the COM and improve the standing balance. Objects: We examined how the limit of stability (LOS) was affected by the lowered center of mass with the weight belt. Methods: Twenty healthy individuals participated in the LOS test. After calculating each participant's COM, a weight belt was fastened ten centimeters below the COM. Trials were acquired with five weight belt conditions: 0%, 2%, 4%, 6%, and 8% of body weight. Outcome measures included reaction time, movement velocity, endpoint excursion, maximum excursion, and directional control in 4 cardinal moving directions. Results: None of our outcome variables were associated with a weight belt (p > 0.075), but all of them were associated with moving direction (p < 0.01). On average, movement velocity of the COM and maximum excursion were 31% and 18% greater, respectively, in mediolateral than anteroposterior direction (5.4°/s vs. 4.1°/s; 97.5% vs. 82.6%). Conclusion: Our results suggest that postural stability was not affected by the weight-induced lowered COM, informing the development and improvement of balance training strategies.

Visual Precise Measurement of Pile Rebound and Penetration Movement Using a High-Speed Line-Scan Camera

  • Lim, Mee-Seub;You, Bum-Jae;Oh, Sang-Rok;Han, Song-Soo;Lee, Sang-Hun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.341-346
    • /
    • 2002
  • When a construction company builds a high structure. many piles should be driven into the ground by a hammer whose weight is 7,000 kg in order to make the ground under the structure safe and strong. So. it is essential to determine whether a pile is penetrated into the ground enough to support the weight of the structure since ground characteristics at different locations are different each other. This paper proposes a visual measurement system for pile rebound and penetration movement including vibration using a high-speed line-scan camera and a specially designed mark to recognize two-dimensional motion parameters of the mark using only a line-scan camera. A mark stacking white and black right-angled triangles is used for the measurement, and movement information for vertical distance, horizontal distance and rotational angle is determined simultaneously. Especially- by adopting a line-scan CCD camera whose line rate is 20 ㎑. the measurement performance of dynamic characteristics of the pile at impact instant is improved dramatically.

투구 속도 증가에 따른 타자의 발 움직임과 지면 반력의 변화 (The Movement of Foot and the Shift of Ground Reaction Force in Batters according to the Ball Speed Increase)

  • 이영석;은선덕
    • 한국운동역학회지
    • /
    • 제14권3호
    • /
    • pp.191-202
    • /
    • 2004
  • The batting performance in baseball is a repetitive movement. In order to make the stabilization of posture and the efficient shift of body weight, both the range of stance and stride are important. The previous studies explained that the consistent stride which included the amount of time, stance, and direction were needed. However, the batting performance is frequently changed according to the several speed of ball. Therefore, this study was to analyze the reaction time, the range of stance, the change of stride, and the change of GRF during the batting movement in three kinds of ball speed (120km/h, 130km/h, & 140km/h). Seven elite players are participated in this study. 1. The reaction time of the stride phase was short whereas the time of the swing phase was long according to the increasing ball speed. 2. The range of the stance was wide and the mediolateral direction of the stride was decreased according to the increasing ball speed. 3. In the three kinds of ball speed, the change of body weight was transferred to the center, the rear foot, and the front foot directions. The ball speed of 130km/h showed the high frequency of the suitable batting. At this ball speed, the movement of the body weight was shifted smoothly and the value of the Ground Reaction Force was large enough.

20대 여성의 신발종류에 따른 족저압 영역별 비교 연구 (A comparison study for mask plantar pressure measures to the difference of shoes in 20 female)

  • 김용재;지진구;김정태;홍준희;이중숙;이훈식;박승범
    • 한국운동역학회지
    • /
    • 제14권3호
    • /
    • pp.83-98
    • /
    • 2004
  • The purpose of this study was to investigate the test-retest of plantar pressures using the F-Scan system over speeds and plantar regions. 6 healthy female subjects in 20's were recruited for the study. Plantar pressure measurements during locomotor activities can provide information concerning foot function, particularly if the timing and magnitude of the loading profile can be related to the location of specific foot structures such as the metatarsal heads. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right. left shoes - sneakers shoes & dress shoes. It was calibrated by the known weight of the test subject standing on one foot. The Tekscan measurements show the insole pressure distribution as a function of the time. This finding has important implications for the development of plantar pressure test protocols where the function of the forefoot is important. According to the result of analysis it is as follows 1) Center of force trajectory in women's dress shoes display direct movement, compare with center of force trajectory in Sneaker shoes displays a little bit curved slow pronation movement. Sneaker shoes in forefoot part display very quick supination movement, therefore, this shoes effects negative effectiveness for ankle's stability Considering center of force trajectory analyzing the more center of force close straight line, the more movement can be quick movement for locomotion. For foot pressure distribution, center of force trajectory in locomotion is better to curved trajectory with pronation movement. So sneaker shoes style is good shoes considering center of pressure distribution trajectory compare with women's dress shoes. 2) Women's dress shoes increased peak pressure in medial, this is effected by high hill's height. The more increased women's dress shoes's height, the more women's peak pressure will increase, pronation can increase compare with before. Supination movement increase, this focused pressure in lateral, also, supination increased more. If the supination movement increased, foot pressure focused in lateral, therefore, it is appeared force distribution in gait direction. This is bad movement in foot's stability. 3) Women's dress shoes in landing phase displayed a long time, this is when women's dress shoes wear, gait movement is unbalance, so, landing phase displayed a long time. For compensation in gait, swing phase quick movement. 4) Women's dress shoes displayed peak pressure distribution in lateral of rearfoot part, Sneakers shoes displayed peak pressure distribution in medial of forefoot part. Its results has good impact absorption compare with women's dress shoes. In forefoot part, sneakers shoes has good propulsive force compare with women's dress shoes.

Estrogen Rather Than Progesterone Cause Constipation in Both Female and Male Mice

  • Oh, Ji-Eun;Kim, Yong-Woon;Park, So-Young;Kim, Jong-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권5호
    • /
    • pp.423-426
    • /
    • 2013
  • Females are more often affected by constipation than males, especially during pregnancy, which is related to the menstrual cycle. Although still controversial, alterations of progesterone and estrogen may be responsible. Therefore, this study was conducted in order to determine whether the female sex steroid hormone itself is responsible for development of constipation in both female and male mice. Administration of estrogen resulted in a decrease in weight of accumulated feces on days 2, 3, 4, and 5 in male mice and on day 5 in female mice, compared with the control group, but progesterone administration did not. Administration of estrogen resulted in a decrease in gastrointestinal movement, compared to normal; however, no significant change was observed by administration of progesterone. In conclusion, estrogen, rather than progesterone, may be a detrimental factor of constipation via decreased bowel movement in mice.

골프드라이빙 스트로크시 역학적 분석 (Mechanical Analysis of golf driving stroke motion)

  • 박광동
    • 한국운동역학회지
    • /
    • 제12권1호
    • /
    • pp.205-219
    • /
    • 2002
  • This research seeks to identify the plantar pressure distribution graph and change in force in connection with effective golf drive strokes and thus to help ordinary golfers have appropriate understanding on the moving of the center of weight and learn desirable drive swing movements. To this end, we conducted surveys on five excellent golfers to analyze the plantar pressure applied when performing golf drive strokes, and suggested dynamic variables quantitatively. 1) Our research presents the desire movements as follows. For the time change in connection with the whole movement, as a golfer raises the club head horizontally low above ground from the address to the top swing, he makes a semicircle using the left elbow joint and shaft and slowly turns his body, thus lengthening the time. And, as the golfer twists the right waist from the middle swing to the impact with the head taking address movement, and does a quick movement, thus shortening the time. 2) For the change in pressure distribution by phase, to strike a strong shot with his weight imposed from the middle swing to the impact, a golfer uses centrifugal force, fixes his left foot, and makes impact. This showed greater pressure distribution on the left sole than on the right sole. 3) For the force distribution graph by phase, the force in the sole from the address to halfway swing movements is distributed to the left foot with 46% and to the right foot with 54%. And, with the starting of down swing, as the weight shifts to the left foot, the force is distributed to the left sole with 58%. Thus, during the impact and follow through movements, it is desirable for a golfer to allow his left foot to take the weight with the right foot balancing the body. 4) The maximum pressure distribution and average of the maximum force in connection with the whole movement changed as the left (foot) and right (foot) supported opposing force, and the maximum pressure distribution also showed much greater on the left sole.

상지 체중부하 운동 프로그램이 무정위 운동성 뇌성마비유아의 이동운동에 미치는 영향 (Effect of Upper Extremity Weight Bearing on Locomotion of Infant with Athetoid Cerebral Palsy)

  • 김중선
    • The Journal of Korean Physical Therapy
    • /
    • 제8권1호
    • /
    • pp.1-14
    • /
    • 1996
  • The present case study has a object to investigate the changes in locomotion patterns of infant with athetoid cerebral palsy would be occured by the program when it is applied with upper extremity weight bearing. The subject has been limited to one infant over one year of age, selected from the patients in the physical therapy clinic, Rehabilitation Center, Taegu University. Subject is normal in the visual and auditory sense, but he is unable to walk on his own Subject weighted 2.9kg at birth and underwent severe postnatal kernicterus, always on the baby-walker at homo. He disliked supine position characteristic in moving in athetoid type before he was under the program. The program was applied 7 months. Each session of the program is composed of 7 stages : (1) prebriefing between the therapist and the parents (2) pretherapy amusement time of the infant (3) warming-up (4) upper extremity weight bearing (5) cooling-down (6) post-therapy amusement time (7) postbriefing. The locomotion of the subject is proved to be influenced by the program. He showed a leftward circular movement as a result of the exercise, reducing the involuntary movement of his head when he was positioned for crawling. Later he proceeded to develop into creeping, crawling, kneeling and finally cruising. In conclusion, it appeared evident that the locomotive abilities of the subject is improved by the program explored in this study. The higher locomotive patterns could be achieved such as crawling, sitting, kneeling and cruising wich enable the upper extremities weight bearing.

  • PDF

EDSMAC을 이용한 충돌 후 차량운동에 영향을 미치는 인자 (Factors Influencing on movement of crashed Vehicle by using EDSMAC)

  • 정호교;강대민
    • 동력기계공학회지
    • /
    • 제6권3호
    • /
    • pp.42-48
    • /
    • 2002
  • Velocity change of crashed vehicle has been applied to assess the safety of passenger and degree of impact severity widely. In this study, 1 D crash analysis and 2 D crash analysis were performed for velocity change of crashed vehicle with HVE 2D, and factors used for these analysis are weight, C.G, roll resistance, stiffness and brake force which influence on velocity change of crashed vehicle. According to results, the velocity change of crashed vehicle was influenced by weight, center of gravity stiffness and brake force but not roll resistance.

  • PDF

마비측에 적용한 외측 쐐기 깔창이 뇌졸증 환자의 체중부하율과 균형, 보행에 미치는 영향 (The Effects of Lateral Wedged Insole to the Shoe of the Affected Side on Weight Bearing, Balance and Gait with Stroke)

  • 김혜림;신원섭
    • PNF and Movement
    • /
    • 제11권2호
    • /
    • pp.21-29
    • /
    • 2013
  • Purpose : The study was to evaluate the weight distribution, balance and gait function of stroke patients wearing lateral wedged insole to the shoe of the affected side. Methods : 27 patients with stroke (15 men, 12 women) participated in this study. Participants performed weight distribution, dynamic balance and gait ability with or without wedged insole on affected side in a random order. The balancia was used to evaluate the weight distribution. Deviation from the center line was analyzed by Dartfish during sit to stand to evaluate dynamic balance. The functional walk ability evaluated by 10 m walking velocity. Results : The asymmetry index of weight bearing improved significantly with wedged insole of affected side(p<.05). During sit to stand, center of gravity significantly moved from non-affected side to more mid line of body(p<.05). Improvement were shown in walking speed after wearing the wedged insole(p<.05). Conclusion : Wedged insole applied on affected side have a beneficial effect on weight distribution, dynamic balance and walking speed with stroke.