• Title/Summary/Keyword: weibull function

Search Result 326, Processing Time 0.027 seconds

Underlying Values of Real-time Traffic Information on Variable Message Sign Using Contingent Valuation Method(CVM) (조건부가치추정법을 이용한 VMS교통정보의 기본가치 추정연구)

  • Lee, Gyeong-A;Kim, Jun-Gi;O, Seong-Ho;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.3
    • /
    • pp.61-72
    • /
    • 2011
  • In the benefits of ITS, there are intangible gains from real-time traffic information as well as classical gains such as travel time saving. These intangible gains are difficult to be estimated by existing transportation investment appraisal commonly used in SOC investment. The major reason is not because of the absence of methodology but because of the absence of generalized values of particular benefits from real time traffic information. This research explores the value of real-time traffic information on VMS that is the most representative of ITS services, by using CVM with Double Bounded Dichotomous Choice Question. Willingness-To-Pay (WTP) functions of drivers are built with survival functions using various types of probability distribution functions such as Exponential, Log-logistic, and Weibull functions. The results reveal that Log-logistic distribution is the most appropriate distribution model to estimate WTP, and the estimated coefficients are stable through LR (Likelihood Ratio) test. For the further study, it is recommended to perform statistical tests of temporal and spatial transferability that is not examined in this research due to the lack of data.

An Analysis of Wind Energy Resources using Synoptic Observational Data in North Korea (종관 바람 관측 자료를 이용한 북한 지역의 풍력자원 분석)

  • Yun, Jun-Hee;Seo, Eun-Kyoung;Park, Young-San;Kim, Hak-Seong
    • Journal of the Korean earth science society
    • /
    • v.31 no.3
    • /
    • pp.225-233
    • /
    • 2010
  • Wind power density distribution over the North Korea territory was investigated by using 30-year wind observations at 27 meteorological stations. The mean annual wind power density over North Korea turned out to be 58.6W/$m^2$, which corresponds to the wind power class of 1. The wind power density shows a seasonal variation, having the highest density in spring and the lowest in summer. In particular, the wind power density in summer is about a half of that in spring. The diurnal variation of the wind power density shows that the highest and lowest densities occur in the afternoon and between 3 and 6 am in local time, respectively. The most potential wind energy generation regions are the Gaema Plateau in the central region, the northeast part of Hamgyeongbuk-do, the south coast of Pyongan-do and the west coast of Hwanghae-do. The mean annual wind power density in Changjin is 151.2W/$m^2$, which is equivalent to the class of 3. In Ryongyon, the annual mean wind power density is 102.4W/$m^2$, which belongs to the class of 2.

Estimation of Berthing Velocity Using Probability Distribution Characteristics in Tanker Terminal (확률분포 특성을 이용한 탱커부두에서의 선박접안속도 예측값 추정)

  • Lee, Sang-Won;Cho, Jang-Won;Cho, Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.43 no.3
    • /
    • pp.186-196
    • /
    • 2019
  • Berthing energy is majorly influenced by the berthing velocity. It is necessary to design an appropriate berthing velocity for each pier, since excessive berthing velocity can cause berthing accident causing damage to the ship and pier. In this study, as a statistical approach for berthing velocity, the probability distributions suitable for the berthing velocities were confirmed using the K-S test, the A-D test and the Q-Q plot. As a result, the frequency distribution of the berthing velocity was found to be suitable using the Weibull distribution as well as the lognormal distribution. Additionally, the predicted values obtained through estimation of the berthing velocity using the concept of probability of exceedance in this study is proposed as a reference of design berthing velocity. It can be observed that the design berthing velocity is set to be somewhat low so that it does not practically match with the reality. This study and its results can be expected to contribute to the development of a proper design velocity calculation method.

Prediction of Life Expectancy for Terminally Ill Cancer Patients Based on Clinical Parameters (말기 암 환자에서 임상변수를 이용한 생존 기간 예측)

  • Yeom, Chang-Hwan;Choi, Youn-Seon;Hong, Young-Seon;Park, Yong-Gyu;Lee, Hye-Ree
    • Journal of Hospice and Palliative Care
    • /
    • v.5 no.2
    • /
    • pp.111-124
    • /
    • 2002
  • Purpose : Although the average life expectancy has increased due to advances in medicine, mortality due to cancer is on an increasing trend. Consequently, the number of terminally ill cancer patients is also on the rise. Predicting the survival period is an important issue in the treatment of terminally ill cancer patients since the choice of treatment would vary significantly by the patents, their families, and physicians according to the expected survival. Therefore, we investigated the prognostic factors for increased mortality risk in terminally ill cancer patients to help treat these patients by predicting the survival period. Methods : We investigated 31 clinical parameters in 157 terminally ill cancer patients admitted to in the Department of Family Medicine, National Health Insurance Corporation Ilsan Hospital between July 1, 2000 and August 31, 2001. We confirmed the patients' survival as of October 31, 2001 based on medical records and personal data. The survival rates and median survival times were estimated by the Kaplan-Meier method and Log-rank test was used to compare the differences between the survival rates according to each clinical parameter. Cox's proportional hazard model was used to determine the most predictive subset from the prognostic factors among many clinical parameters which affect the risk of death. We predicted the mean, median, the first quartile value and third quartile value of the expected lifetimes by Weibull proportional hazard regression model. Results : Out of 157 patients, 79 were male (50.3%). The mean age was $65.1{\pm}13.0$ years in males and was $64.3{\pm}13.7$ years in females. The most prevalent cancer was gastric cancer (36 patients, 22.9%), followed by lung cancer (27, 17.2%), and cervical cancer (20, 12.7%). The survival time decreased with to the following factors; mental change, anorexia, hypotension, poor performance status, leukocytosis, neutrophilia, elevated serum creatinine level, hypoalbuminemia, hyperbilirubinemia, elevated SGPT, prolonged prothrombin time (PT), prolonged activated partial thromboplastin time (aPTT), hyponatremia, and hyperkalemia. Among these factors, poor performance status, neutrophilia, prolonged PT and aPTT were significant prognostic factors of death risk in these patients according to the results of Cox's proportional hazard model. We predicted that the median life expectancy was 3.0 days when all of the above 4 factors were present, $5.7{\sim}8.2$ days when 3 of these 4 factors were present, $11.4{\sim}20.0$ days when 2 of the 4 were present, and $27.9{\sim}40.0$ when 1 of the 4 was present, and 77 days when none of these 4 factors were present. Conclusions : In terminally ill cancer patients, we found that the prognostic factors related to reduced survival time were poor performance status, neutrophilia, prolonged PT and prolonged am. The four prognostic factors enabled the prediction of life expectancy in terminally ill cancer patients.

  • PDF

Relationships on Magnitude and Frequency of Freshwater Discharge and Rainfall in the Altered Yeongsan Estuary (영산강 하구의 방류와 강우의 규모 및 빈도 상관성 분석)

  • Rhew, Ho-Sang;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.223-237
    • /
    • 2011
  • The intermittent freshwater discharge has an critical influence upon the biophysical environments and the ecosystems of the Yeongsan Estuary where the estuary dam altered the continuous mixing of saltwater and freshwater. Though freshwater discharge is controlled by human, the extreme events are mainly driven by the heavy rainfall in the river basin, and provide various impacts, depending on its magnitude and frequency. This research aims to evaluate the magnitude and frequency of extreme freshwater discharges, and to establish the magnitude-frequency relationships between basin-wide rainfall and freshwater inflow. Daily discharge and daily basin-averaged rainfall from Jan 1, 1997 to Aug 31, 2010 were used to determine the relations between discharge and rainfall. Consecutive daily discharges were grouped into independent events using well-defined event-separation algorithm. Partial duration series were extracted to obtain the proper probability distribution function for extreme discharges and corresponding rainfall events. Extreme discharge events over the threshold 133,656,000 $m^3$ count up to 46 for 13.7y years, following the Weibull distribution with k=1.4. The 3-day accumulated rain-falls which occurred one day before peak discharges (1day-before-3day -sum rainfall), are determined as a control variable for discharge, because their magnitude is best correlated with that of the extreme discharge events. The minimum value of the corresponding 1day-before-3day-sum rainfall, 50.98mm is initially set to a threshold for the selection of discharge-inducing rainfall cases. The number of 1day-before-3day-sum rainfall groups after selection, however, exceeds that of the extreme discharge events. The canonical discriminant analysis indicates that water level over target level (-1.35 m EL.) can be useful to divide the 1day-before-3day-sum rainfall groups into discharge-induced and non-discharge ones. It also shows that the newly-set threshold, 104mm, can just separate these two cases without errors. The magnitude-frequency relationships between rainfall and discharge are established with the newly-selected lday-before-3day-sum rainfalls: $D=1.111{\times}10^8+1.677{\times}10^6{\overline{r_{3day}}$, (${\overline{r_{3day}}{\geqq}104$, $R^2=0.459$), $T_d=1.326T^{0.683}_{r3}$, $T_d=0.117{\exp}[0.0155{\overline{r_{3day}}]$, where D is the quantity of discharge, ${\overline{r_{3day}}$ the 1day-before-3day-sum rainfall, $T_{r3}$ and $T_d$, are respectively return periods of 1day-before-3day-sum rainfall and freshwater discharge. These relations provide the framework to evaluate the effect of freshwater discharge on estuarine flow structure, water quality, responses of ecosystems from the perspective of magnitude and frequency.

Evaluation and Comparison of Effects of Air and Tomato Leaf Temperatures on the Population Dynamics of Greenhouse Whitefly (Trialeurodes vaporariorum) in Cherry Tomato Grown in Greenhouses (시설내 대기 온도와 방울토마토 잎 온도가 온실가루이(Trialeurodes vaporariorum)개체군 발달에 미치는 영향 비교)

  • Park, Jung-Joon;Park, Kuen-Woo;Shin, Key-Il;Cho, Ki-Jong
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.420-432
    • /
    • 2011
  • Population dynamics of greenhouse whitefly, Trialeurodes vaporariorum (Westwood), were modeled and simulated to compare the temperature effects of air and tomato leaf inside greenhouse using DYMEX model simulator (pre-programed module based simulation program developed by CSIRO, Australia). The DYMEX model simulator consisted of temperature dependent development and oviposition modules. The normalized cumulative frequency distributions of the developmental period for immature and oviposition frequency rate and survival rate for adult of greenhouse whitefly were fitted to two-parameter Weibull function. Leaf temperature on reversed side of cherry tomato leafs (Lycopersicon esculentum cv. Koko) was monitored according to three tomato plant positions (top, > 1.6 m above the ground level; middle, 0.9 - 1.2 m; bottom, 0.3 - 0.5 m) using an infrared temperature gun. Air temperature was monitored at same three positions using a Hobo self-contained temperature logger. The leaf temperatures from three plant positions were described as a function of the air temperatures with 3-parameter exponential and sigmoidal models. Data sets of observed air temperature and predicted leaf temperatures were prepared, and incorporated into the DYMEX simulator to compare the effects of air and leaf temperature on population dynamics of greenhouse whitefly. The number of greenhouse whitefly immatures was counted by visual inspection in three tomato plant positions to verify the performance of DYMEX simulation in cherry tomato greenhouse where air and leaf temperatures were monitored. The egg stage of greenhouse whitefly was not counted due to its small size. A significant positive correlation between the observed and the predicted numbers of immature and adults were found when the leaf temperatures were incorporated into DYMEX simulation, but no significant correlation was observed with the air temperatures. This study demonstrated that the population dynamics of greenhouse whitefly was affected greatly by the leaf temperatures, rather than air temperatures, and thus the leaf surface temperature should be considered for management of greenhouse whitefly in cherry tomato grown in greenhouses.