• Title/Summary/Keyword: weekly prediction

Search Result 45, Processing Time 0.02 seconds

A Study on the Demand Prediction Model for Repair Parts of Automotive After-sales Service Center Using LSTM Artificial Neural Network (LSTM 인공신경망을 이용한 자동차 A/S센터 수리 부품 수요 예측 모델 연구)

  • Jung, Dong Kun;Park, Young Sik
    • The Journal of Information Systems
    • /
    • v.31 no.3
    • /
    • pp.197-220
    • /
    • 2022
  • Purpose The purpose of this study is to identifies the demand pattern categorization of repair parts of Automotive After-sales Service(A/S) and proposes a demand prediction model for Auto repair parts using Long Short-Term Memory (LSTM) of artificial neural networks (ANN). The optimal parts inventory quantity prediction model is implemented by applying daily, weekly, and monthly the parts demand data to the LSTM model for the Lumpy demand which is irregularly in a specific period among repair parts of the Automotive A/S service. Design/methodology/approach This study classified the four demand pattern categorization with 2 years demand time-series data of repair parts according to the Average demand interval(ADI) and coefficient of variation (CV2) of demand size. Of the 16,295 parts in the A/S service shop studied, 96.5% had a Lumpy demand pattern that large quantities occurred at a specific period. lumpy demand pattern's repair parts in the last three years is predicted by applying them to the LSTM for daily, weekly, and monthly time-series data. as the model prediction performance evaluation index, MAPE, RMSE, and RMSLE that can measure the error between the predicted value and the actual value were used. Findings As a result of this study, Daily time-series data were excellently predicted as indicators with the lowest MAPE, RMSE, and RMSLE values, followed by Weekly and Monthly time-series data. This is due to the decrease in training data for Weekly and Monthly. even if the demand period is extended to get the training data, the prediction performance is still low due to the discontinuation of current vehicle models and the use of alternative parts that they are contributed to no more demand. Therefore, sufficient training data is important, but the selection of the prediction demand period is also a critical factor.

Forecasting of Motorway Traffic Flow based on Time Series Analysis (시계열 분석을 활용한 고속도로 교통류 예측)

  • Yoon, Byoung-Jo
    • Journal of Urban Science
    • /
    • v.7 no.1
    • /
    • pp.45-54
    • /
    • 2018
  • The purpose of this study is to find the factors that reduce prediction error in traffic volume using highway traffic volume data. The ARIMA model was used to predict the day, and it was confirmed that weekday and weekly characteristics were distinguished by prediction error. The forecasting results showed that weekday characteristics were prominent on Tuesdays, Wednesdays, and Thursdays, and forecast errors including MAPE and MAE on Sunday were about 15% points and about 10 points higher than weekday characteristics. Also, on Friday, the forecast error was high on weekdays, similar to Sunday's forecast error, unlike Tuesday, Wednesday, and Thursday, which had weekday characteristics. Therefore, when forecasting the time series belonging to Friday, it should be regarded as a weekly characteristic having characteristics similar to weekend rather than considering as weekday.

Prediction of SST for Operational Ocean Prediction System

  • Kang, Yong-Quin
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.189-194
    • /
    • 2001
  • A practical algorithm for prediction of the sea surface temperatures (SST)from the satellite remote sensing data is presented in this paper. The fluctuations of SST consist of deterministic normals and stochastic anomalies. Due to large thermal inertia of sea water, the SST anomalies can be modelled by autoregressive or Markov process, and its near future values can be predicted provided the recent values of SST are available. The actual SST is predicted by superposing the pre-known SST normals and the predicted SST anomalies. We applied this prediction algorithm to the NOAA AVHRR weekly SST data for 18 years (1981-1998) in the seas adjacent to Korea (115-$145^{\circ}E$, 20-$55^{\circ}N$). The algorithm is applicable not only for prediction of SST in near future but also for nowcast of SST in the cloud covered regions.

  • PDF

Performance Assessment of Weekly Ensemble Prediction Data at Seasonal Forecast System with High Resolution (고해상도 장기예측시스템의 주별 앙상블 예측자료 성능 평가)

  • Ham, Hyunjun;Won, Dukjin;Lee, Yei-sook
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.261-276
    • /
    • 2017
  • The main objectives of this study are to introduce Global Seasonal forecasting system version5 (GloSea5) of KMA and to evaluate the performance of ensemble prediction of system. KMA has performed an operational seasonal forecast system which is a joint system between KMA and UK Met office since 2014. GloSea5 is a fully coupled global climate model which consists of atmosphere (UM), ocean (NEMO), land surface (JULES) and sea ice (CICE) components through the coupler OASIS. The model resolution, used in GloSea5, is N216L85 (~60 km in mid-latitudes) in the atmosphere and ORCA0.25L75 ($0.25^{\circ}$ on a tri-polar grid) in the ocean. In this research, we evaluate the performance of this system using by RMSE, Correlation and MSSS for ensemble mean values. The forecast (FCST) and hindcast (HCST) are separately verified, and the operational data of GloSea5 are used from 2014 to 2015. The performance skills are similar to the past study. For example, the RMSE of h500 is increased from 22.30 gpm of 1 week forecast to 53.82 gpm of 7 week forecast but there is a similar error about 50~53 gpm after 3 week forecast. The Nino Index of SST shows a great correlation (higher than 0.9) up to 7 week forecast in Nino 3.4 area. It can be concluded that GloSea5 has a great performance for seasonal prediction.

Time Series Stock Prices Prediction Based On Fuzzy Model (퍼지 모델에 기초한 시계열 주가 예측)

  • Hwang, Hee-Soo;Oh, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.689-694
    • /
    • 2009
  • In this paper an approach to building fuzzy models for predicting daily and weekly stock prices is presented. Predicting stock prices with traditional time series analysis has proven to be difficult. Fuzzy logic based models have advantage of expressing the input-output relation linguistically, which facilitates the understanding of the system behavior. In building a stock prediction model we bear a burden of selecting most effective indicators for the stock prediction. In this paper information used in traditional candle stick-chart analysis is considered as input variables of our fuzzy models. The fuzzy rules have the premises and the consequents composed of trapezoidal membership functions and nonlinear equations, respectively. DE(Differential Evolution) identifies optimal fuzzy rules through an evolutionary process. The fuzzy models to predict daily and weekly open, high, low, and close prices of KOSPI(KOrea composite Stock Price Index) are built, and their performances are demonstrated.

Establishing a Demand Forecast Model for Container Inventory in Liner Shipping Companies (정기선사의 컨테이너 재고 수요예측모델 구축에 대한 연구)

  • Jeon, Jun-woo;Jung, Kil-su;Gong, Jeong-min;Yeo, Gi-tae
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.4
    • /
    • pp.1-13
    • /
    • 2016
  • This study attempts to establish a precise forecast model for the container inventory demand of shipping companies through forecasts based on equipment type/size, ports, and weekly system dynamics. The forecast subjects were Shanghai and Yantian Ports. Only dry containers (20, 40) and high cubes (40) were used as the subject container inventory in this study due to their large demand and valid data computation. The simulation period was from 2011 to 2017 and weekly data were used, applying the actual data frequency among shipping companies. The results of the model accuracy test obtained through an application of Mean Absolute Percentage Error (MAPE) verified that the forecast model for dry 40' demand, dry 40' high cube demand, dry 20' supply, dry 40' supply, and dry 40' high cube supply in Shanghai Port provided an accurate prediction, with $0%{\leq}MAPE{\leq}10%$. The forecast model for supply and demand in Shanghai Port was otherwise verified to have relatively high prediction power, with $10%{\leq}MAPE{\leq}20%$. The forecast model for dry 40' high cube demand and dry 20' supply in Yantian Port was accurate, with $0%{\leq}MAPE{\leq}10%$. The forecast model for supply and demand in Yantian Port was generally verified to have relatively high prediction power, with $10%{\leq}MAPE{\leq}20%$. The forecast model in this study also had relatively high accuracy when compared with the actueal data managed in shipping companies.

Predictability of Northern Hemisphere Teleconnection Patterns in GloSea5 Hindcast Experiments up to 6 Weeks (GloSea5 북반구 대기 원격상관패턴의 1~6주 주별 예측성능 검증)

  • Kim, Do-Kyoung;Kim, Young-Ha;Yoo, Changhyun
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.295-309
    • /
    • 2019
  • Due to frequent occurrence of abnormal weather, the need to improve the accuracy of subseasonal prediction has increased. Here we analyze the performance of weekly predictions out to 6 weeks by GloSea5 climate model. The performance in circulation field from January 1991 to December 2010 is first analyzed at each grid point using the 500-hPa geopotential height. The anomaly correlation coefficient and mean-square skill score, calculated each week against the ECWMF ERA-Interim reanalysis data, illustrate better prediction skills regionally in the tropics and over the ocean and seasonally during winter. Secondly, we evaluate the predictability of 7 major teleconnection patterns in the Northern Hemisphere: North Atlantic Oscillation (NAO), East Atlantic (EA), East Atlantic/Western Russia (EAWR), Scandinavia (SCAND), Polar/Eurasia (PE), West Pacific (WP), Pacific-North American (PNA). Skillful predictability of the patterns turns out to be approximately 1~2 weeks. During summer, the EAWR and SCAND, which exhibit a wave pattern propagating over Eurasia, show a considerably lower skill than the other 5 patterns, while in winter, the WP and PNA, occurring in the Pacific region, maintain the skill up to 2 weeks. To account for the model's bias in reproducing the teleconnection patterns, we measure the similarity between the teleconnection patterns obtained in each lead time. In January, the model's teleconnection pattern remains similar until lead time 3, while a sharp decrease of similarity can be seen from lead time 2 in July.

An Application of Machine Learning in Retail for Demand Forecasting

  • Muhammad Umer Farooq;Mustafa Latif;Waseemullah;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.1-7
    • /
    • 2023
  • Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.

An Application of Machine Learning in Retail for Demand Forecasting

  • Muhammad Umer Farooq;Mustafa Latif;Waseem;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.210-216
    • /
    • 2023
  • Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.

Short-term Electric Load Prediction Considering Temperature Effect (단파효과를 고려한 단기전력 부하예측)

  • 박영문;박준호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.5
    • /
    • pp.193-198
    • /
    • 1986
  • In this paper, 1-168 hours ahead load prediction algorithm is developed for power system economic weekly operation. Total load is composed of three components, which are base load, week load and weather-sensitive load. Base load and week load are predicted by moving average and exponential smoothing method, respectively. The days of moving average and smoothing constant are optimally determined. Weather-sensitive load is modeled by linear form. The paramiters of weather load model are estimated by exponentially weighted recursive least square method. The load prediction of special day is very tedious, difficult and remains many problems which should be improved. Test results are given for the day of different types using the actual load data of KEPCO.

  • PDF