DOI QR코드

DOI QR Code

Performance Assessment of Weekly Ensemble Prediction Data at Seasonal Forecast System with High Resolution

고해상도 장기예측시스템의 주별 앙상블 예측자료 성능 평가

  • Ham, Hyunjun (Global Environment System Research Division, National Institute of Meteorological Research) ;
  • Won, Dukjin (Meteorological Service Policy Division, Meteorological Service Promotion Bureau, Korea Meteorological Administration) ;
  • Lee, Yei-sook (Forecast Technology Division, Forecast Bureau, Korea Meteorological Administration)
  • 함현준 (국립기상과학원 지구시스템연구과) ;
  • 원덕진 (기상청 기상서비스진흥국 기상서비스정책과) ;
  • 이예숙 (기상청 예보국 예보기술과)
  • Received : 2017.02.28
  • Accepted : 2017.06.27
  • Published : 2017.09.30

Abstract

The main objectives of this study are to introduce Global Seasonal forecasting system version5 (GloSea5) of KMA and to evaluate the performance of ensemble prediction of system. KMA has performed an operational seasonal forecast system which is a joint system between KMA and UK Met office since 2014. GloSea5 is a fully coupled global climate model which consists of atmosphere (UM), ocean (NEMO), land surface (JULES) and sea ice (CICE) components through the coupler OASIS. The model resolution, used in GloSea5, is N216L85 (~60 km in mid-latitudes) in the atmosphere and ORCA0.25L75 ($0.25^{\circ}$ on a tri-polar grid) in the ocean. In this research, we evaluate the performance of this system using by RMSE, Correlation and MSSS for ensemble mean values. The forecast (FCST) and hindcast (HCST) are separately verified, and the operational data of GloSea5 are used from 2014 to 2015. The performance skills are similar to the past study. For example, the RMSE of h500 is increased from 22.30 gpm of 1 week forecast to 53.82 gpm of 7 week forecast but there is a similar error about 50~53 gpm after 3 week forecast. The Nino Index of SST shows a great correlation (higher than 0.9) up to 7 week forecast in Nino 3.4 area. It can be concluded that GloSea5 has a great performance for seasonal prediction.

Keywords

References

  1. Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-Present). J. Hydrometeor., 4, 1147-1167. https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
  2. Ahn, J.-B., H.-S. Park, H.-S. Lee, W.-S. Lee, and J.-W. Kim, 1997: A study of climate drift in atmosphere and ocean GCMs. J. Korean Meteor. Soc., 33, 509-520.
  3. Arribas, A., and Coauthors, 2011: The GloSea4 ensemble prediction system for seasonal forecasting. Mon. Wea. Rev., 139, 1891-1910, doi:10.1175/2010MWR3615.1.
  4. Barnett, T. P., and R. Preisendorfer, 1987: Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Mon. Wea. Rev., 115, 1825-1850. https://doi.org/10.1175/1520-0493(1987)115<1825:OALOMA>2.0.CO;2
  5. Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677-699, doi:10.5194/gmd-4-677-2011.
  6. Bowler, N. E., A. Arribas, S. E. Beare, K. R. Mylne, and G. J. Shutts, 2009: The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 135, 767-776. https://doi.org/10.1002/qj.394
  7. Choi, J., S.-W. Son, Y.-G. Ham, J.-Y. Lee, and H.-M. Kim, 2016: Seasonal to interannual prediction skills of near-surface air temperature in the CMIP5 decadal hindcast experiments. J. Climate, 29, 1511-1527. https://doi.org/10.1175/JCLI-D-15-0182.1
  8. Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 1759-1782. https://doi.org/10.1256/qj.04.101
  9. Dee, D. P., and Coauthors, 2011: The ERA-interim reanalys: Configuration and performance of the data assimilation system, Quart. J. Roy. Meteor. Soc., 137, 553-597. https://doi.org/10.1002/qj.828
  10. Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245-272, doi:10.1007/s00382-012-1481-2.
  11. Gupta, A. S., L. C. Muir, J. N. Brown, S. J. Phipps, P. J. Durack, D. Monselesan, and S. E. Wijffels, 2012: Climate drift in the CMIP3 models. J. Climate, 25, 4621-4640, doi:10.1175/JCLI-D-11-00312.1.
  12. Ham, H. J., Y.-S. Lee, D. J. Won, and D.-K. Rha, 2016: Current operation Status of seasonal forecast model and forecast verification in 2015. NIMR Numerical model development division Technical report, 133 pp.
  13. Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813-829. https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2
  14. Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 36-50. https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
  15. Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model Documentation and Software User's Manual, Version 4.1. Los Alamos National Laboratory Technical Report, LA-CC-06-012, 76 pp.
  16. Jung, M.-I., S.-W. Son, J. Choi, and H.-S. Kang, 2015: Assessment of 6-month lead prediction skill of the GloSea5 hindcast experiment. Atmosphere, 25, 323-337, doi:10.14191/Atmos.2015.25.2.323 (in Korean with English abstract).
  17. Jung, M.-I., S.-W. Son, Y. Lim, K. H. Song, D. J. Won, and H.-S. Kang, 2016: Assessment of stratospheric prediction skill of the GloSea5 hindcast experiment. Atmosphere, 26, 203-214, doi:10.14191/Atmos.2016.26.1.203 (in Korean with English abstract).
  18. Jung, Y. Y., I. J. Moon, and P. H. Jang, 2014: Comparison and verification of short-term ocean prediction result of ocean circulation model (NEMO/NEMOVAR) and sea circulation-atmosphere coupling model (GloSea5). Proc. of the autumn Meeting of KMS, 2014, Jeju, 633-634.
  19. Kang, H.-S., K.-O. Boo, and C. H. Cho, 2011: Introduction to KMA-Met office joint seasonal forecasting system and evaluation of its hindcast ensemble simulations. Proc. of 36th NOAA Annual Climate Diagnostics and Prediction Workshop, NOAA, 78-82.
  20. Kang, I.-S., C.-H. Ho, and K.-D. Min, 1992: Long-range forecast of summer precipitation in Korea. J. Korean Meteor. Soc., 28, 283-292 (in Korean with English abstract).
  21. Kwon, M.-H., and K.-J. Lee, 2014: A prediction of Northeast Asian summer precipitation using the NCEP Climate Forecast System and canonical correlation analysis. J. Korean Earth Sci. Soc., 35, 88-94, doi:10.5467/JKESS.2014.35.1.88 (in Korean with English abstract).
  22. Lee, K.-J., and M.-H. Kwon, 2015: A Prediction of Northeast Asian summer precipitation using teleconnection. Atmosphere, 25, 179-183, doi:10.14191/Atmos.2015.25.1.179 (in Korean with English abstract).
  23. Lee, S.-H., and K.-M. Lee, 2008: The distribution of natural disaster in mountainous region of Gangwon-do. J. Korean Geogr. Soc., 43, 843-857 (in Korean with English abstract).
  24. Lee, S.-M., H.-S. Kang, Y.-H. Kim, Y.-B. Byun, and C. H. Cho, 2016: Verification and comparison of forecast skill between global seasonal forecast system version 5 and unified model during 2014. Atmosphere, 26, 59-72, doi:10.14191/Atmos..
  25. MacLachlan, C., and Coauthors, 2014: Global seasonal forecast system version 5 (Glosea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072-1084.
  26. Madec, G., 2008: NEMO ocean engine: Note du Pole de modelisation. Institut Pierre-Simon Laplace, 27, 1288-1619.
  27. Mogensen, K., M. A. Balmaseda, and A. Weaver, 2012: The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. ECMWF Technical Memorandum, No. 668, 59 pp.
  28. Rawlins, F., S. P. Ballard, K. J. Bovis, A. M. Clayton, D. Li, G. W. Inverarity, A. C. Lorenc, and T. J. Payne, 2007: The Met Office global four-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 133, 347-362. https://doi.org/10.1002/qj.32
  29. Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625. https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
  30. Ryu, Y., J.-Y. Shin, W. Nam, and J.-H. Heo, 2012: Forecast of the daily inflow with artificial neural network using wavelet transform at Chungju Dam. J. Korea Water Resour. Assoc., 45, 1321-1330, doi:10.3741/JKWRA.2012.45.12.1321 (in Korean with English abstract).
  31. Scaife, A. A., and Coauthors, 2014: Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales. Geophys. Res. Lett., 41, 1752-1758, doi:10.1002/2013GL059160.
  32. Tennant, W. J., G. J. Shutts, A. Arribas, and S. A. Thompson, 2011: Using a stochastic kinetic energy backscatter scheme to improve MOGREPS probabilistic forecast skill. Mon. Wea. Rev., 139, 1190-1206, doi:10.1175/2010MWR3430.1.
  33. Valcke, S., 2013: The OASIS3 coupler: A European climate modelling community software. Geosci. Model Dev., 6, 373-388, doi:10.5194/gmd-6-373-2013.
  34. Waters, J., D. J. Lea, M. J. Martin, I. Mirouze, A. Weaver, and J. While, 2014: Implementing a variational data assimilation system in an operational 1/4 degree global ocean model. Quart. J. Roy. Meteor. Soc., 141, 333-349, doi:10.1002/qj.2388.
  35. Williams, K. D., and Coauthors, 2015: The met office global coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 1509-1524, doi:10.5194/gmd-8-1509-2015.
  36. Won, D. J., Y.-S. Lee, Y. H. Kang, H. J. Ham, and D. J. Kim, 2015: Current operation system of high resolution global seasonal forecast system version 5 and verification in 2014. NIMR Numerical model development division Technical report, 88 pp.