With the rapid growth of internet infrastructure, World Wide Web is evolving recently into various services such as cloud computing, social network services. It simply go beyond the sharing of information. It started to provide new services such as E-business, remote control or management, providing virtual services, and recently it is evolving into new services such as cloud computing and social network services. These kinds of communications through World Wide Web have been interested in and have developed user-centric customized services rather than providing provider-centric informations. In these environments, it is very important to check and analyze the user requests to a website. Especially, estimating user preferences is most important. For these reasons, analyzing web logs is being done, however, it has limitations that the most of data to analyze are based on page unit statistics. Therefore, it is not enough to evaluate user preferences only by statistics of specific page. Because recent main contents of web page design are being made of media files such as image files, and of dynamic pages utilizing the techniques of CSS, Div, iFrame etc. In this paper, large log analyzer was designed and executed to analyze web server log to estimate web contents preferences of users. With mapreduce which is based on Hadoop, large logs were analyzed and web contents preferences of media files such as image files, sounds and videos were estimated.
This study describes the beginning and further development of a collection web-based materials for an efficient approach to culinary practice education. A database was created using a five-step process of analysis, design, development, operation and evaluation. The menu for the web-based culinary practice educational materials included cooking basics, the real status of cooking, cooking related knowledge, performance evaluation, a data room and a bulletin board. As at 30 July, 2010, the datadase of educational materials, contained a total of 571 items. These comprised 139 cooking pictures, 33 recipes, 22 cooking videos, 74 cooking animations, 57 collections of basic knowledge, 14 evaluation reports, 21 supplementary textbooks, and 211 sets of other related information. The webbased materials are adequate for culinary education purposes, and their use is expected to be very highly valued.
Unlike in the past, when the demand for web content was increasing and the use behavior of watching short videos was changed, unlike the past when only TV dramas and differentiation were mentioned, web dramas are more firmly established through various attempts. A typical form change is commerce of web dramas. Recently, more and more cases have been produced in the form of product sales by securing real-time functioned, which are disadvantages of commerce, through web dramas. In this trend, web dramas are also increasing interest in product sales. This can be said to be a form developed from the concept of a company's PPL, and the number of companies that use web dramas that predict continuous growth as strategic product promotion and marketing means is continuously increasing. Therefore, this study provides basic data on consumer behavior to collect product information and purchase products using web dramas to companies that are using or considering web dramas, and through this, companies design and establish marketing strategies using web dramas.
International Journal of Computer Science & Network Security
/
제22권6호
/
pp.230-240
/
2022
Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.
2020년 기준 대표적인 온라인 동영상 플랫폼인 유튜브에는 1분에 약 500시간의 동영상이 업로드되고 있다. 이에 업로드된 다수의 다양한 동영상을 통해 정보를 획득하는 사용자의 수가 늘고 있어 온라인 동영상 플랫폼들은 더 나은 추천 서비스를 제공하기 위해 노력하고 있다. 현재 사용되고 있는 추천 서비스는 사용자의 시청 기록을 기반으로 사용자에게 동영상을 추천하는데 이는 교육용 동영상과 같이 특정 목적 및 관심사를 다루는 동영상 추천에 좋은 방법이 아니다. 최근 추천 시스템은 사용자의 시청 기록뿐만 아니라 아이템의 콘텐츠 특징을 함께 활용한다. 본 논문에서는 유튜브를 기반으로 교육용 동영상 추천을 위한 교육용 동영상의 콘텐츠 특징을 추출하고, 이를 활용하는 추천 시스템을 설계하여 웹 애플리케이션으로 구현한다. 사용자들의 만족도를 조사하여 추천 시스템의 추천 성능의 만족도 85.36%, 편의성 만족도 87.80%를 보인다.
최근 고화질 영상 입력장치가 일반화 되고 있으며, 실시간으로 입력된 영상을 한 곳에서 동시에 볼 수 있는 중앙관제시스템이 필수 요소가 되고 있다. 이때 프로그램을 따로 설치하지 않고, 웹을 통한 접근을 하려는 시도들이 있으나, 여러 개의 고화질 영상을 동시에 웹 브라우저를 통해 시청하려하면, 웹 브라우저가 강제 종료되는 현상이 발생된다. 본 논문에서는 실시간 고화질 영상에 대한 웹기반의 HLS 멀티뷰 시스템을 제안한다. 화면으로 보이는 멀티뷰 화면을 트랜스코딩을 통해서 재구성하였고, 보안의 취약점이 있는 ActiveX를 사용하지 않으면서도, 통시에 웹브라우저를 통해서 여러 영상 입력을 모니터링 할 수 있는 시스템을 구현 하였다.
Recently, user-created video shows high increasing in production and consumption. Among these, videos records an identical subject in limited space with multi-view are coming out. Occurring main reason of this kind of video is popularization of portable camera and mobile web environment. Multi-view has studied in visually representation technique fields for point of view. Definition of multi-view has been expanded and applied to various contents authoring lately. To make user-created videos into multi-view contents can be a kind of suggestion as a user experience for new form of video consumption. In this paper, we show the possibility to make user-created videos into multi-view video content through analyzing multi-view video contents even there exist attribute differentiations. To understanding definition and attribution of multi-view classified and analyzed existing multi-view contents. To solve time axis arranging problem occurred in multi-view processing proposed audio matching method. Audio matching method organize feature extracting and comparing. To extract features is proposed MFCC that is most universally used. Comparing is proposed n by n. We proposed multi-view video contents that can consume arranged user-created video by user selection.
대용량 영상을 다루는 디지털 비디오 라이브러리나 웹 방송에서는 영상 색인이 매우 중요한 역할을 하며, 이는 영상을 내용 단위로 분할하는 알고리즘에 기반한다. 본 논문에서 구현된 V2Web Studio는 영상 색인을 지원하는 시스템으로서, 샷 경계 검출 알고리즘을 이용한 영상 클립 생성 시스템이다. V2Web Studio는 영상 클립 생성 과정을 1) 영상 신호를 분석하여 샷 경계를 자동 검출하는 단계, 2) 검출된 결과에 포함될 수 있는 오류를 수작업으로 제거하는 단계, 3) 물리적인 샷 경계를 논리적인 계층구조로 모델링하는 단계, 4) 계층구조로 모델링된 각 모델링 인스턴스를 다양한 표준 압축 포맷으로 생성하는 단계로 구분하고, 각 단계에 해당하는 작업은 샷 검출기, 샷 검증기, 영상 모델기, 클립 생성기라는 독립적인 소프트웨어 도구로 구현하였다.
In this paper, we propose a real-time drone-based violent protest detection system. Our proposed system uses drones to detect scenes of violent protest in real-time. The important problem is that the victims and violent actions have to be manually searched in videos when the evidence has been collected. Firstly, we focused to solve the limitations of existing collecting evidence devices by using drone to collect evidence live and upload in AWS(Amazon Web Service)[1]. Secondly, we built a Deep Learning based violence detection model from the videos using Yolov3 Feature Pyramid Network for human activity recognition, in order to detect three types of violent action. The built model classifies people with possession of gun, swinging pipe, and violent activity with the accuracy of 92, 91 and 80.5% respectively. This system is expected to significantly save time and human resource of the existing collecting evidence.
본 논문에서는 비디오 데이터를 이용한 감독 학습 프레임 워크를 제안한다. 최근 Deep Convolutional Neural Networks의 성공으로 많은 분야에서 사용되고 있다. DCNNs 모델 성능의 중요한 요소 중 하나는 Large-cale Dataset을 구축하는 것으로 Small-scale Dataset으로 모델을 학습한다면 과적합 및 일반화 오류를 해결하기 어렵다. 이러한 문제점을 해결하는 방법으로 이미지 왜곡을 통한 데이터 셋을 증가 또는 Dropout 기법 등을 사용하였지만 원본 데이터가 적은 경우에는 모델이 일반화 능력을 갖기 어렵다. 따라서 본 논문에서는 이러한 문제점을 보완하고자 Web으로부터 얻은 비디오에서 해당 Class와 관련된 프레임들을 추출하여 보다 쉽게 데이터 셋을 확장하고, 모델의 성능을 향상 시키는 방법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.