• Title/Summary/Keyword: web shear

Search Result 353, Processing Time 0.025 seconds

A simplified method for evaluation of shear lag stress in box T-joints considering effect of column flange flexibility

  • Doung, Piseth;Sasakia, Eiichi
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.167-179
    • /
    • 2020
  • This study provides a simplified method for the evaluation of shear lag stress in rectangular box T-joints. The occurrence of shear lag phenomenon in the box T-joint generates stress concentration localized at both web-flange junctions of the beam, which leads to cracking or failure in the weld region of the joint. To prevent such critical circumstance, peak stress at the weld region is required to be checked during a preliminary design stage. In this paper, the shear lag stresses in the T-joints were evaluated using least-work solution in which the longitudinal displacements of the beam flange and web were presumed. The evaluation process considered particularly the effect of column flange flexibility, which was represented by an axial spring model, on the shear lag stress distribution. A simplified method for stress evaluation was provided to avoid solving complex mathematical problems using a stress modification factor βs from a parametric study. The results showed that the proposed method was valid for predicting the shear lag stress in the box T-joints manually, as well compared with finite element results. The results are further summarized, discussed, and clarified that more flexible column flange caused higher stress concentration.

Evaluation on Shear Behavior of Double-tee Dap-ends with the Least Depth from Optimization Proces (최적이론에 의하여 설계된 최소 깊이 더블티 댑단부 전단거동 평가)

  • 유승룡;김대훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.43-54
    • /
    • 1999
  • Shear tests are performed on four full-scale 12.5 m proto-type models, "least depth double tee," which are resulted from the optimization process. Domestic superimposed live load regulation, domestic material properties which is available to product. Korean building code requirements, construction environments and economy are considered as the main factors to establish the process. All of the specimens tested fully comply with the shear strength requirements as specified by ACI 318-95. The research has shown following results. 1) The development length requirement of ACI 318-95 does not seem a good predictor for the estimation of bond failure in a beam with the strands below the supports. 2) The load required for the first initial coner cracking in the dap end and first web shear cracking does not seem to have any relation with the dimension and shear strength of the section in the test beams. 3) The strand slip has a direct relationship with the web shear cracking. However, the coner cracking in the dap end does not give any help for the slip in anchorage. 4) Use of whole area for bearing steel at the bottom of dap end is desired for safe bearing pressure design in the precast prestressed double tee beams. 5) The deflection of beam influences directly on the amount of strand slip at the anchorage after initiation of it, and relationship between them are very linear.

JAYA-GBRT model for predicting the shear strength of RC slender beams without stirrups

  • Tran, Viet-Linh;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.691-705
    • /
    • 2022
  • Shear failure in reinforced concrete (RC) structures is very hazardous. This failure is rarely predicted and may occur without any prior signs. Accurate shear strength prediction of the RC members is challenging, and traditional methods have difficulty solving it. This study develops a JAYA-GBRT model based on the JAYA algorithm and the gradient boosting regression tree (GBRT) to predict the shear strength of RC slender beams without stirrups. Firstly, 484 tests are carefully collected and divided into training and test sets. Then, the hyperparameters of the GBRT model are determined using the JAYA algorithm and 10-fold cross-validation. The performance of the JAYA-GBRT model is compared with five well-known empirical models. The comparative results show that the JAYA-GBRT model (R2 = 0.982, RMSE = 9.466 kN, MAE = 6.299 kN, µ = 1.018, and Cov = 0.116) outperforms the other models. Moreover, the predictions of the JAYA-GBRT model are globally and locally explained using the Shapley Additive exPlanation (SHAP) method. The effective depth is determined as the most crucial parameter influencing the shear strength through the SHAP method. Finally, a Graphic User Interface (GUI) tool and a web application (WA) are developed to apply the JAYA-GBRT model for rapidly predicting the shear strength of RC slender beams without stirrups.

A Study on the Shear Resisting Effect of Filling-up Carbon Fiber Rod Plastic in Reinforced Concrete Beams with web Reinforcement (전단보강근이 있는 철근콘크리트보의 매립형 CFRP 전단보강효과에 대한 연구)

  • Kim, Woo-Hyoun;Lee, Hyoung-Seok;Kim, Young-Sik;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.2 s.16
    • /
    • pp.65-71
    • /
    • 2005
  • The reinforced concrete becomes deteriorated. In strengthening of reinforced concrete structure, it is recently useing FRP. In research, flexural strengthening of reinforced concrete beam can be Efficient design. But shear srengthening og reinforced concrte beam can't be Efficient design by variable cause. The purpose of this study is to investigate the shear resisting effect of filling-up CFRP in reinforced concrete beams with web reinforced. Ten specimens were manufactured and tested. In the test result, it was analysis. The main variables in the test were a space of web reinforcement and a direction of CFRP.

  • PDF

An Experimental Study on the Shear Behavior of Reinforced Concrete Deep Beams Subject to Concentrated Loads (집중하중을 받는 철근콘크리트 깊은 보의 전단거동에 관한 실험적 연구)

  • Lee, Jin-Seop;Kim, Sang-Sik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.191-200
    • /
    • 1999
  • The shear behavior of simply supported reinforced concrete deep beams subject to concentrated loads has been scrutinized experimentally to verify the influence of the structural parameters such as concrete strength, shear span-depth ratio, and web reinforcements. A total of 42 reinforced concrete deep beams with compressive strengths of 250 kg/$cm^2$ and 500 kg/$cm^2$ has been tested at the laboratory under one or two-point top loading. The shear span-depth ratio have been taken as three types of 0.4, 0.8 and 1.2, and the horizontal and vertical shear reinforcements ratio, ranging from 0.0 to 0.57 percent respectively. In the tests, the effects of the shear span-depth ratio, concrete strength and web reinforcements on the shear strength and crack initiation and propagation have been carefully checked and analyzed. From the tests, it has been observed that the failures of all specimens were due to shear and the shear behaviors of specimens were greatly affected by inclined cracks from the load application points to the supports in shear span. The load bearing capacities have changed significantly depending on the shear span ratio, and the efficiency of horizontal shear reinforcements were increased as the shear span-depth ratio decreased. The test results have been analyzed and compared with the formulas proposed by previous researchers and the design equation from the code. While the shear strengths obtained from the tests showed around 1.4 and 1.9 times higher than the values calculated by CIRIA guide and the domestic code, they were closely coincident with the formulas given by de Paiva's equation.

Experimental Study on Flexural Structural Performance of Sinusoidal Corrugated Girder (파형 웨브주름 보의 휨성능에 관한 실험적 연구)

  • Kim, Jong Sung;Chae, Il Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.503-511
    • /
    • 2015
  • In long span steel structure, the plate girder reinforced with stiffeners are commonly used. When choosing the cross section with deep depth of girder as well as narrow width, however, out of plane buckling can be a problem due to web slenderness. In an effort to solve this issue, current study determined the applicability of using corrugated web girder with deep depth as bending member, which is generally being utilized in both factory and warehouse nationwide. To accomplish this, we performed the loading test of H-shaped beam with sinusoidal corrugated web. Corrugated web CP-2.3 specimen exhibited 12% less maximal bending strength but CP-3.2 specimen exerted 24% increase in strength compared to plate web P-4.5. this result indicates that corrugated web provides enough strength even with unfavorable width-thickness ratio of plate. And bending as well as shear strength estimated by the Eurocode (EN 1993-1-5) were compared with both bending strength by loading test and shear strength estimated by KBC2009. In case of eurocode, increase in plate thickness did not help in bending performance improvement. moreover, shear performance was sensitive to the thickness of the web folds and the shape of the web plate.

A Study on Optimum design of Corrugated web girder using Eurocode (유로코드를 이용한 주름웨브보의 최적설계 연구)

  • Shon, Su-Deok;Yoo, Mi-Na;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.47-56
    • /
    • 2012
  • This paper describes the structural design and optimization of sinusoidally corrugated web girder by using EUROCODE (EN 1993-1-5). The optimum design methodology and characteristics of the optimal cross-section are discussed. We investigate a shear buckling and the concerned standards for corrugated web and explain the equations to obtain a critical stress according to buckling type. In order to perform optimization, we consider an objective function as minimum weight of the girder and use the constraint functions as slenderness ratio and stresses of flanges as well as corrugated web and deflection. Genetic Algorithm is adopted to search a global optimum solution for this mathematical model. For numerical example, the clamped girder under the concentrated load is considered, while the optimum cross-sectional area and design variables are analyzed. From the results of the adopted example, the optimum design program of the sinusoidally corrugated web girder is able to find the suitable solution which satisfied a condition subject to constraint functions. The optimum design shows the tendency to decrease the cross-sectional area with the yielding strength increase and increase the areas with load increase. Moreover, the corrugated web thickness shows a stable increase concerning the load.

Model Equation for Shear Strength of Reinforced Concrete Beams without Web Reinforcement (전단보강근이 없는 철근콘크리트 보의 전단강도 예측 모델식 제안)

  • 김진근;박연동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.124-129
    • /
    • 1993
  • In this study, a simple and accurate model equation for prediction of shear strength of reinforce concrete beams without web, reinforcement is proposed based on basic shear transfer mechanism and modified Bazant's size effect law. The proposed equation includes the effects of concrete strength, longitudinal steel ratio, shear span to depth ratio and effective depth. Comparisons with published experimental data indicate that the proposed equation estimates properly the effects of these factors. Among many equations, ACI code equation, Zsutty's equation and Bazant's equation are selected for comparison. As the result, the accuracy of the proposed equation is better than that of any other equations.

  • PDF

Fracture Analysis of Flexural-Shear Failure in RC Beams (철근콘크리트보의 휨-전단균열에 대한 파괴역학적 해석)

  • Lim, Cheol-Won;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.418-423
    • /
    • 1998
  • This paper is intended to investigate the behavior of flexural-shear cracking in reinforced concrete beams without web reinforcement with FEM incorporated into a linear elastic fracture mechanics approach(LEFM). Each crack was propagated progressively by a finite length, then the quantitative reponses were examined. The results show that the horizontal crack was initiated by the bond-jnduced shear stress due to horizontal shearing action of the T-C force couple after the formation of the critical flexural crack. Also, the horizontal crack is considered to be a major factor of shear failure in slender reinforced concrete beams without web reinforcement.

  • PDF

An Experimental Study on Reinforcing Effectiveness of H-Shaped Steel Beams with Rectangular Web Openings (다공 H 형강보의 보강효과에 관한 실험적 연구)

  • Kim, Jin-Mu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.213-222
    • /
    • 1999
  • On condition that opening located at high shear strength position in H-shaped steel beams with web opening, beams are structurally to be frailed so necessity and efficiency of vertical reinforcement to add horizontal reinforcement already published ahead study. Up to the present study of web opening beams, limited one opening which located in comparatively small shear strength position. But frequently opening area is enlargement by necessity, so width of opening is larger by limit of depth or increasing number of opening. This study carry out experiment to make efficient reinforcing method about strength and deformation of steel beams with web openings. Parameters of this study are openings location, ratio of opening width within opening height and various reinforcing types.

  • PDF