• Title/Summary/Keyword: weathering and erosion

Search Result 68, Processing Time 0.022 seconds

Geomorphological Development of Embayment Area at the estuary of Nakdong River (낙동강 하구 만입지의 지형발달)

  • Yang, Jae-Hyuk;Cho, Kook-Rai
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.6
    • /
    • pp.649-665
    • /
    • 2011
  • Estuary of River Nakdong(in south-eastern coast of Korean Peninsula) is the most representative site of delta in Korea. This study is to elucidate morpho-structural background associated with the embayment area and sedimentation processes, having allowed development of the delta. In this area, Great morphological trait of the embayment area had been formulated by differential erosion exploiting regional fracture system(NNE-SSW, NNW-SSE, E-W,...) of tectonic origin. For this reason, outline of the embayment basin shows quadrangular plan, and ridges and dissected valleys of neighbouring mountains draw frequently morphological lineament pattern. At the last glacial age when delta deposit had not yet filled the actual embayment basin of the Nakdong, mechanical weathering(frost shattering) and mass-movement processes had provided detritus materials composed of blocks, boulders on bottom the basin. With the postglacial transgression in the Holocene, the basin had been submerged, then began to be filled with fluvio-marine deposits from Kimhae-Yangsan area toward actual estuarine zone, so that Nakdong delta have been formed. Analysis and synthesis of from hundreds of boring data of the delta area reveal that progression of delta formation have been accompanied with the development of barrier islands. If the barrier islands had grown as forming a plural row, then their intervals have posteriorly filled with another fluvio-marine deposits. Besides, it shows that delta deposits are essentially alluvial. However, at the periphery of the delta, intervention of fine marine deposits is frequently found.

  • PDF

Micromorphological Characteristics of Buddhist Temple Woods Treated with Eire-retardant (방염 처리 고목재의 미생물 분해의 미시형태적 특징)

  • Wi, Seung Gon;Kim, Ik-Joo;Park, Young Man;Kim, Yoon Soo
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.27-34
    • /
    • 2001
  • Following the recommendations made by the cultural authorities the wooden cultural properties (WCP) had been treated with fire-retardants for fire protection. However, visual inspections of some of the WCPs treated with fire-retardants showed microbial decay. The work was extended to examine the micromorphological characteristics of the WCPs in a Buddhist temple which had been treated with fire-retardant. Microscopic examination showed the presence of typical soft rot cavities along the length of microfibrils in the secondary wall. Bacterial attack was also observed by scanning and transmission electron microscopy. It is interesting that the decay patterns observed in the Buddhist temple were very similar to those observed in the waterlogged woods. Presumably chemicals in the fire-retardants used rendered the wood susceptible to attack by soft-rot and bacterial decay by causing an increase in the moisture content of wood. Further studies are needed to investigate the effect of fire-retardants used currently on the hygroscopicity and the strength of wood materials in the WCPs. Microbial attacks caused degradation of the secondary cell walls and in some cases also of the middle lamella. In addition, the cell walls in the outer parts of wood were also degraded due to weathering, and cell separation occurred from total disintegration of the middle lamella.

  • PDF

A study on landforms in Gosung, Gangwon province (강원도 고성 일대의 지형 경관에 대한 연구)

  • Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.3
    • /
    • pp.65-81
    • /
    • 2011
  • The landforms based on granite and basalt in Gosung, Gangwon province were analysed. Some part of this area experienced volcanic activities while most of the area was experiencing erosion of weathered mantle(saprolites) of mesoic granites during cenozoic period. Two different lithologies affect the mode of landscape evolution. The basalt covers the mountain tops as a 'cap rock' with flat surfaces. It shows relatively fresh rock surface with cliff or steep slops at the boundary with weathered granite. The blocks detached from the cliff accumulated at the foot of the cliff(talus) or moved and filled the valley(block streams). These debris slopes cover the deeply weathered granites. In the case of Oeum Mt. and Duibaekjae, the number of point of origin of the basalt flow is not clear. The orientation of blocks from block stream coincides with slope aspects and it can be assumed that the bolcks were moved by solifluction. The landscape change of the block streams are dominated by removal of weathered material from beneath of the valley rather than removal of bedrock blocks themselves.

Distribution Patterns and Provenance of Surficial Sediments from Ieodo and Adjacent Sea (이어도와 주변 해역의 표층퇴적물 분포와 퇴적물 기원지)

  • Chang, Tae Soo;Jeong, Jong Ok;Lee, Eunil;Byun, Do-Seong;Lee, HwaYoung;Son, Chang Soo
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.588-598
    • /
    • 2020
  • The seafloor geology of Ieodo, a submerged volcanic island, has been poorly understood, although this place has gained considerable attention for ocean and climate studies. The main purpose of the study is to understand and elucidate types, distribution patterns and provenance of the surficial sediments in and around the Ieodo area. For this purpose, 25 seafloor sediments were collected using a box-corer, these having been analyzed for grain sizes. XRD (X-ray Diffraction) analysis of fine-grained sediments was conducted for characterizing clay minerals. The peak of Ieodo exists in the northern region, while in the southern area, shore platforms occur. The extensive platform in the south results from severe erosion by strong waves. However, the northern peak still survived from differential weathering. Grain size analyses indicated that gravels and gravelly sands with skeletons and shells were distributed predominantly on the volcanic apron and shore platform. Muddy sediments were found along the Ieodo and the adjacent deeper seafloor. Based on the analysis of clay mineral composition, illites were the most abundant in fine muds, followed by chlorites and kaolinites. The ratio plots of clay minerals for the provenance discrimination suggested that the Ieodo muds were likely to be derived from the Yangtze River (Changjiang River). As a consequence, gravels and gravelly sands with bioclastics may be supplied from the Ieodo volcanic apron by erosion processes. Wave activities might play a major role in transportation and sedimentation. In contrast, fine muds were assumed to be derived from the inflow of the Yangtze River, particularly in summer. Deposition in the Ieodo area is, therefore, probably controlled by the inflow from the Changjiang Dilute Water and summer typhoons from the south.

Studies on the Mechanical Properties of Weathered Granitic Soil -On the Elements of Shear Strength and Hardness- (화강암질풍화토(花崗岩質風化土)의 역학적(力學的) 성질(性質)에 관(關)한 연구(硏究) -전단강도(剪斷强度)의 영향요소(影響要素)와 견밀도(堅密度)에 대(對)하여-)

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.66 no.1
    • /
    • pp.16-36
    • /
    • 1984
  • It is very important in forestry to study the shear strength of weathered granitic soil, because the soil covers 66% of our country, and because the majority of land slides have been occured in the soil. In general, the causes of land slide can be classified both the external and internal factors. The external factors are known as vegetations, geography and climate, but internal factors are known as engineering properties originated from parent rocks and weathering. Soil engineering properties are controlled by the skeleton structure, texture, consistency, cohesion, permeability, water content, mineral components, porosity and density etc. of soils. And the effects of these internal factors on sliding down summarize as resistance, shear strength, against silding of soil mass. Shear strength basically depends upon effective stress, kinds of soils, density (void ratio), water content, the structure and arrangement of soil particles, among the properties. But these elements of shear strength work not all alone, but together. The purpose of this thesis is to clarify the characteristics of shear strength and the related elements, such as water content ($w_o$), void ratio($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$), and the interrelationship among related elements in order to decide the dominant element chiefly influencing on shear strength in natural/undisturbed state of weathered granitic soil, in addition to the characteristics of soil hardness of weathered granitic soil and root distribution of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands. For the characteristics of shear strength of weathered granitic soil and the related elements of shear strength, three sites were selected from Kwangju district. The outlines of sampling sites in the district were: average specific gravity, 2.63 ~ 2.79; average natural water content, 24.3 ~ 28.3%; average dry density, $1.31{\sim}1.43g/cm^3$, average void ratio, 0.93 ~ 1.001 ; cohesion, $ 0.2{\sim}0.75kg/cm^2$ ; angle of internal friction, $29^{\circ}{\sim}45^{\circ}$ ; soil texture, SL. The shear strength of the soil in different sites was measured by a direct shear apparatus (type B; shear box size, $62.5{\times}20mm$; ${\sigma}$, $1.434kg/cm^2$; speed, 1/100mm/min.). For the related element analyses, water content was moderated through a series of drainage experiments with 4 levels of drainage period, specific gravity was measured by KS F 308, analysis of particle size distribution, by KS F 2302 and soil samples were dried at $110{\pm}5^{\circ}C$ for more than 12 hours in dry oven. Soil hardness represents physical properties, such as particle size distribution, porosity, bulk density and water content of soil, and test of the hardness by soil hardness tester is the simplest approach and totally indicative method to grasp the mechanical properties of soil. It is important to understand the mechanical properties of soil as well as the chemical in order to realize the fundamental phenomena in the growth and the distribution of tree roots. The writer intended to study the correlation between the soil hardness and the distribution of tree roots of Pinus rigida Mill. planted in 1966 and Pinus rigida ${\times}$ taeda in 199 to 1960 in the denuded forest lands with and after several erosion control works. The soil texture of the sites investigated was SL originated from weathered granitic soil. The former is situated at Py$\ddot{o}$ngchangri, Ky$\ddot{o}$m-my$\ddot{o}$n, Kogs$\ddot{o}$ng-gun, Ch$\ddot{o}$llanam-do (3.63 ha; slope, $17^{\circ}{\sim}41^{\circ}$ soil depth, thin or medium; humidity, dry or optimum; height, 5.66/3.73 ~ 7.63 m; D.B.H., 9.7/8.00 ~ 12.00 cm) and the Latter at changun-long Kwangju-shi (3.50 ha; slope, $12^{\circ}{\sim}23^{\circ}$; soil depth, thin; humidity, dry; height, 10.47/7.3 ~ 12.79 m; D.B.H., 16.94/14.3 ~ 19.4 cm).The sampling areas were 24quadrats ($10m{\times}10m$) in the former area and 12 in the latter expanding from summit to foot. Each sampling trees for hardness test and investigation of root distribution were selected by purposive selection and soil profiles of these trees were made at the downward distance of 50 cm from the trees, at each quadrat. Soil layers of the profile were separated by the distance of 10 cm from the surface (layer I, II, ... ...). Soil hardness was measured with Yamanaka soil hardness tester and indicated as indicated soil hardness at the different soil layers. The distribution of tree root number per unit area in different soil depth was investigated, and the relationship between the soil hardness and the number of tree roots was discussed. The results obtained from the experiments are summarized as follows. 1. Analyses of simple relationship between shear strength and elements of shear strength, water content ($w_o$), void ratio ($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$). 1) Negative correlation coefficients were recognized between shear strength and water content. and shear strength and void ratio. 2) Positive correlation coefficients were recognized between shear strength and dry density. 3) The correlation coefficients between shear strength and specific gravity were not significant. 2. Analyses of partial and multiple correlation coefficients between shear strength and the related elements: 1) From the analyses of the partial correlation coefficients among water content ($x_1$), void ratio ($x_2$), and dry density ($x_3$), the direct effect of the water content on shear strength was the highest, and effect on shear strength was in order of void ratio and dry density. Similar trend was recognized from the results of multiple correlation coefficient analyses. 2) Multiple linear regression equations derived from two independent variables, water content ($x_1$ and dry density ($x_2$) were found to be ineffective in estimating shear strength ($\hat{Y}$). However, the simple linear regression equations with an independent variable, water content (x) were highly efficient to estimate shear strength ($\hat{Y}$) with relatively high fitness. 3. A relationship between soil hardness and the distribution of root number: 1) The soil hardness increased proportionally to the soil depth. Negative correlation coefficients were recognized between indicated soil hardness and the number of tree roots in both plantations. 2) The majority of tree roots of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands distributed at 20 cm deep from the surface. 3) Simple linear regression equations were derived from indicated hardness (x) and the number of tree roots (Y) to estimate root numbers in both plantations.

  • PDF

Comparative Analysis of Bathymetry in the Dongdo and the Seodo, Dokdo using Multibeam Echosounder System (다중빔 음향 측심기를 이용한 독도 동도와 서도 남부 연안 해저지형 비교 분석)

  • Lee, Myoung Hoon;Kim, Chang Hwan;Park, Chan Hong;Rho, Hyun Soo;Kim, Dae Choul
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.477-486
    • /
    • 2017
  • In this study, we analyze precise seabed geomorphology and conditions for comparing the nearshore areas of the Dongdo(East Island) and the Seodo(West Island) using detailed bathymetry data and seafloor backscattering images, in Dokdo, the East Sea. We have been obtained the detailed bathymetry data and the seafloor backscattering data. The survey range is about $250m{\times}250m$ including land of islets to the nearshore areas of the southern part of the Dongdo and the Seodo. As a result of bathymetry survey, the southern area of the Dongdo(~50 m) is deeper than the Seodo(~30 m) in the water depth. The survey areas are consist of extended bedrocks from land of the Dongdo and the Seodo. The underwater rock region of the Seodo is larger than the Dongdo. In spite of similar extended rocks features from islets, there are some distinctive seabed characteristics between the southern nearshore areas of the Dongdo and the Seodo. The Talus-shaped seafloor environment formed by gravel and underwater rocks originating from the land of the Dongdo is up to about 15 m depth. And the boundary line of between extended bedrocks and seabottom is unclear in the southern nearshore of the Dongdo. On the other hand, the southern coast of the Seodo is characterized by relatively large scale underwater rocks and evenly distributed sediments, which clearly distinguish the boundary of between extended bedrocks and seafloor. This is because the tuff layers exposed to the coastal cliffs of the Dongdo are weak against weathering and erosion. It is considered that there are more influences of the clastic sediments carried from the land of the Dongdo compared with the Seodo. Particularly, the land of the Dongdo has been undergoing construction activities. And also a highly unstable ground such as faults, joints and cracks appears in the Dongdo. In previous study, there are dissimilar features of the massive tuff breccia formations of the Dongdo and the Seodo. These conditions are thought to have influenced the different seabed characteristics in the southern nearshore areas of the Dongdo and the Seodo.

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안정성 해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.430-440
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal field. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about 60$^{\circ}$ in the northern part and 83$^{\circ}$ in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9MPa and that of weak sandstone was 10MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north (east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30∼36$^{\circ}$ for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described above. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures, the stability of slope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안전성해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.183-193
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal fetid. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about $60^{\circ}$in the northern part and $83^{\circ}$in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9 MPa and that of weak sandstone was 10 MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north(east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30~$36^{\circ}$for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described abode. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures. the stability of 니ope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF