• Title/Summary/Keyword: weathered shale soils

Search Result 15, Processing Time 0.021 seconds

Studies on Forest Soils in Korea (I) (한국(韓國)의 삼림토양(森林土壤)에 관(關)한 연구(硏究)(I))

  • Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.47 no.1
    • /
    • pp.52-61
    • /
    • 1980
  • This study is carried out to learn the properties of forest soils in Korea and propose the reasonable management methods of forest land. Among 178 soil series surveyed until now in Korea forest soils include 64 series broken down according to the weathered products into 5 categories such as residual materials on mountain and hill, residual materials on rolling and hill, colluvial materials on local valley and fans, alluvial materials and volcanic ash soils. What discussed in this paper are classification system, parent rocks, texture class and drainage conditions of Korean forest soils. The characteristics of Korean forest soil properties classified in U.S.D.A. soil classification system are as follows: 1. Residual soils on mountain and hill (29 soil series) are almost Lithosols without any distinct soil profile development. They have loamy skeletal (11 series), coarse loamy (5 series), fine loamy (3 series), and fine clayey soils (3 series). Their drainage conditions are somewhat excessively drained in 16 series and well drained in 7 series. 2. Residual soils on rolling and hill (19 series) are Red-Yellow Podzolic soils with well developed soil profiles. They have coarse and fine loamy texture in 12 series and fine clayey texture in 5 series mostly with well drained condition. 3. Colluvial soils on local valley and fans (13 series) include mostly Regosols and some Red-Yellow Podzolic Soils and Acid Brown Forest Soils. They have loamy skeletal (4 series), coarse loamy (3 series), fine loamy (3 series), and fine clayey soils (2 series) with well drained condition. 4. Soil textures of weathered products of parent rocks are as follows: 1) Parent rocks producing coarse texture soils are rhyolite, granite gneiss, schist, shale, sandstone, siltstone, and conglomerate. 2) Parent rocks producing fine and heavy texture soils are limestone, basalt, gabbro, and andesite porphyry. 3) Granite is a parent rock producing various textured soils.

  • PDF

Types and Characteristics of Landslides in Danyang Geopark (단양 지질공원 내의 산사태 유형과 특징)

  • Seong-Woo Moon;Ho-Geun Kim;Yong-Seok Seo
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.427-438
    • /
    • 2023
  • We carried out a geological survey to classify the types of mass movement in Danyang Geopark (where various rock types are distributed) and analyzed the mechanical and hydraulic characteristics of landslide materials using a series of laboratory tests. Debris flows occurred in areas of limestone/marble, shale, and porphyroblastic gneiss, and limestone/marble landslides were distinguished from the others through the presence of karren topography. Soil tests showed that soil derived from weathered gneiss, which has a higher proportion of coarse grains, has a higher friction angle, lower cohesion, and larger hydraulic conductivity than soils from areas of limestone/marble, and shale. Rock failure mass movements occurred in areas of phyllite, sandstone, and conglomerate and were subdivided into plane failure, block-fall, and boulder-fall types in areas of phyllite, sandstone, and conglomerate, respectively. The shear strength of phyllite is much lower than that of the other types of rock, which have similar rock quality. The slake durability index of the conglomerate is similar to that of the other rock types, which have similar degrees of weathering, but differential weathering of the matrix and clasts was clearly observed when comparing the samples before and after the test. This study can help establish appropriate reinforcement and disaster prevention measures, which depend on the type of mass movement expected given the geological characteristics of an area.

Tephra Origin of Goryeri Archaeological Site, Milyang Area, Korea (밀양 고례리 화산 유리물질 기원 해석)

  • 김주용;양동윤;박영철
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.35-43
    • /
    • 1999
  • Goryeri archaeological site is located in the upstream valley of the Danjang River. The basement rocks of the area are composed of the Cretaceous to Palaeogene biotite granite (KbGr), acidic dyke (Kad), Milyang Andesite (Kma) and Jyunggagsan Formation. Among them Milyang Andesite and Jyunggagsan Formation are prevailed in archaeological site and they are composed of reddish brown tuffaceous shale, sandstone and conglomerate, with intercalations of acidic tuffs and lapilli tuffs. The purpose of this research is not only to compare REE pattern of the soil-sedimentary deposits with those of surrounding rocks, but also to identify vitric tephra in the soil-sedimentary deposits derived from the andesite, acidic tuff and lapilii tuff, in order to illucidate the provenance of the vitric tephra. The rare earth element(REE) of the soils and sedimentary deposits results in the same REE pattern with those analyzed from the surrounding basement rocks. This indicates that the soils and sedimentary deposits are originated from the surrounding basement rocks, most probably from the andesite and lapilli tuff. In addition, vitric tephra were identified both in the Quaternary in-situ weathered soils and sedimentary deposits (PMU-13 and PMU-17), and in the weathered surrounding lapilli tuff. These vitric tephra are considered to be different from those of Japanese AT(Aira Tanzawa) -tephra. The latter is predominant with clean, platty, bubble-walled and Y-shaped vitrics, while the former is conspicuous with those shapes of large and diverse size and devitrified, as well as having secondarily bubbled-surfaces reflecting surface weathering. The size of vitric fragments in the Goryeri site is about 300${\mu}{\textrm}{m}$ and large in size in compasion to 150${\mu}{\textrm}{m}$ of Japanese AT-Tephra. The interim results of the research are contradictary to the explanations based on a series of AT-tephra researches carried by Japanese scholar. In short, the vitric materials of the Goryeri archaeological site are most probably originated from the weathering products of the surrounding basement rocks, and are different from the AT-tephra in their size, shape and devitrification properties. Thus it is highly recommended to have a further comprehensive research which is more emphasized the magmatic genesis of these vitric tephra in addition to the external shape and morphology.

  • PDF

The Morphology, Physical and Chemical Characteristics of the Red-Yellow Soils in Korea (우리나라 전토양(田土壤)의 특성(特性) (저구릉(低丘陵), 산록(山麓) 및 대지(臺地)에 분포(分布)된 적황색토(赤黃色土)를 중심(中心)으로))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.35-52
    • /
    • 1973
  • Red Yellow Soils occur very commonly in Korea and constitute the important upland soils of the country which are either presently being cultivated or are suitable for reclaiming and cultivating. These soils are distributed on rolling, moutain foot slopes, and terraces in the southern and western parts of the central districts of Korea, and are derived from granite, granite gneiss, old alluvium and locally from limestone and shale. This report is a summary of the morphology, physical and chemical characteristics of Red Yellow Soils. The data obtained from detailed soil surveys since 1964 are summarized as follows. 1. Red-Yellows Soils have an A, Bt, C profile. The A horizon is dark colored coarse loamy or fine loamy with the thin layer of organic matter. The B horizon is dominantly strong brown, reddish brown or yellowish red, clayey or fine loamy with clay cutans on the soil peds. The C horizon varies with parent materials, and is coarser texture and has a less developed structure than the Bt horizon. Soil depth, varied with relief and parent materials, is predominantly around 100cm. 2. In the physical characteristics, the clay content of surface soil is 18 to 35 percent, and of subsoil is 30 to 90 percent nearly two times higher than the surface soil. Bulk density is 1.2 to 1.3 in the surface soil and 1.3 to 1.5 in the subsoil. The range of 3-phase is mostly narrow with 45 to 50 percent in solid phase, 30 to 45 percent in liquid one, and 5 to 25 percent in gaseous state in the surface soil; and 50 to 60 solid, 35 to 45 percent liquid and less than 15 percent gaseous in the subsoil. Available soil moisture capacity ranges from 10 to 23 percent in the surface soil, and 5 to 16 percent in the subsoil. 3. Chemically, soil reaction is neutral to alkaline in soils derived from limestone or old fluviomarine deposits, and acid to strong acid in other ones. The organic matter content of surface soil varying considerably with vegetation, erosion and cultivation, ranges from 1.0 to 5.0 percent. The cation exchange capacity is 5 to 40 me/100gr soil and closely related to the content of organic matter, clay and silt. Base saturation is low, on the whole, due to the leaching of extractable cations, but is high in soils derived from limestone with high content of lime and magnesium. 4. Most of these soils mainly contain halloysite (a part of kaolin minerals), vermiculite (weathered mica), and illite, including small amount of chlorite, gibbsite, hematite, quartz and feldspar. 5. Characteristically they are similar to Red Yellow Podzolic Soils and a part of Reddish Brown Lateritic Soils of the United States, and Red Yellow Soils of Japan. According to USDA 7th Approximation, they can be classified as Udu Its or Udalfs, and in FAO classification system to Acrisols, Luvisols, and Nitosols.

  • PDF

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea IV. Genesis and Distribution of the Soil Clay Minerals (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토광물(土壤粘土鑛物)의 특성(特性)과 생성학적(生成學的) 연구(硏究) IV. 토양점토광물(土壤粘土鑛物)의 분포(分布) 및 생성(生成))

  • Um, Myung-Ho;Lim, Hyung-Sik;Kim, Tai-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.202-212
    • /
    • 1992
  • This study reports on the genesis and mineralogical characteristics of the clay minerals in the soils derived from the five major parent rocks of granite, granite-gneiss, limestone, shale, and basalt in Korea. The investigation on the mineralogical aspects of primary and secondary minerals of the rocks and coarse fractions in the soils have been already reported. In this report, the identification of clay minerals in the soil clay fractions was done through the analyses of chemical, X-ray diffraction, and thermal methods. The studies showed clearly that much of the clay minerals was evolved by the weathering of primary minerals and some were further developed by the transformation of secondary minerals. Cation exchange capacity(CEC) of the clay fractions increased with higher amotunts of vermiculite, chlorite, and illite, however, decreased with higher hydroxy octahedral sheet within the interlayer spaces of vermiculite even if dominant clay with vermiculite. Feldspars in the granite and granite-gneiss might be completely transformed to kaolin mineral, Illite, chlolrite, and vermiculite formed by the alteration of micas, amphibole, augite, and primary chlorile seem to be subsequently transformed to the mixed layer minerals such as illite/vermiculite, illite/chlorite, and chlorite/vermiculite. These weathering products may be ultimately transformed into kaolin minerals. The smectite minerals in the clay fractions of the soils developed on the limestone are considerably present and they seem to be formed directly by the precipitation from high Mg solution and/or by the transformation of vermiculite from micas and chlorite in the parent materials. Abundant presence of illite in the soil clays developed on the shale is considered to have inherited from the fine particles and more resistant hydrous muscovite. The weathering sequences of the hydrous muscovite were as follows according to the degree of soil development ; hydrous muscovite ${\rightarrow}$ illite/vermiculite mixed layer(Inceptisols, Daegu series) and hydrous muscovite ${\rightarrow}$ illite/vermiculite mixed layer ${\rightarrow}$ vermiculite ${\rightarrow}$ kaolin mineral(Alfisols, Buyeo series). The plagioclase in the basalt might be mostly weathered to kaolin minerais. The augite in the basalt is likely to be transformed through progressive stage of weathering, augite ${\rightarrow}$ chlorite ${\rightarrow}$ chlorote/vermiculite mixed layer ${\rightarrow}$ vermiculite ${\rightarrow}$ kaolin. Another weathering sequence of augite could be expected, augite ${\rightarrow}$ chlorite ${\rightarrow}$ illite by the presence of illite and illite/vermiculite mixed layer in the clay fractions. Vermiculite and gibbsite were quantified from thermogravimetry(TG) and kaolin minerals, from both TG and differerential thermal analysis (DTA). Vermiculite in Jangseong series from the limestone was the dominant clay mineral of 21.7 percent and had a range in the order of 9.2 percent in Buyeo series to 5.4 percent in Daegu series from the shale. The rest soils ranged from 8.8 to 28.3 percent. Kaolin minerals were the dominant clay mineral of 32.7 percent in Asan series from the granite-gneiss and Gueom series of 32.0 percent from the basalt. The soils from the limestone ranged from 9.4 to 14.9 percent. The rest soils ranged from 8.9 to 28.6 percent. Gibbsite were 3.9 and 2.3 percent for Weoljeong and Chahang series from the granite, respectively. In Asan and Cheongsan series from the giranite-gneiss were 1.4 and 4.5 percent, respectively, and 3.6 percent in Jangpa series from the basalt.

  • PDF