• Title/Summary/Keyword: weathered rock

Search Result 459, Processing Time 0.023 seconds

(A study failure-strength characteristics of soil layer contained Corestone) (핵석을 포함하는 토층의 파괴강도 특성연구)

  • 이수곤;금동헌
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.711-716
    • /
    • 2002
  • When judging the ground by core-logging, depth of coring might be stopped by coming into view of the moderately weathered rock and also considered as bedrock line. However, highly weathered rock may appear again, if coring more, because there are core-stones in the residual soil and highly weathered rock by the effect of hydraulic-thermal differentiation and does the irregular rock weathering or metamorphic rock region. Therefore, there are room for misunderstanding of diagnosing the moderately weathered rock. Even though the irregular ground where the corestones were come out will show clear geotechnical differences between the ground and the gradually weathered bedrock, nowadays, the construction sites do not take into account the characteristic of core-stone region. In conclusion, to study the failure-strength characteristics of soil layers containing core-stones, we made artificial core-stones and varied percentage of corestones, and measured cohesion and friction factors to adjust them to construction sites containing corestones such as slope, tunnel, and underground.

  • PDF

Load Transfer Mechanism of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 하중전이 기구)

  • Kwon, Oh-Sung;Cho, Sung-Min;Jung, Sung-Jun;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.57-64
    • /
    • 2005
  • Since the allowable bearing capacities of piles in weathered/fractured rock are mainly governed by settlement, the load-displacement behavior of the rock socketed pile should be well known. To predict pile head settlement at the design stage, the exact understanding of the load-transfer mechanisms is essential. Therefore, in this research, the load-transfer mechanisms of drilled shaft socketed into weathered rock was investigated. For that, 5 cast-in-place concrete piles with diameters of 1,000 mm were socketed into weathered gneiss. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. A comprehensive field/laboratory testing program on weathered rock at the field test sites was also performed to describe the in situ rock mass conditions quantitatively. And then, the effect of rock mass condition on the load transfer mechanism was investigated. The side shear resistance of the pile in moderately weathered rock reached to yielding point at a few millimeter displacements, and after that, the rate of resistance increment dramatically decreased. However, that in the highly /completely weathered rock did not show the obvious yielding point, and gradually increased showing the hyperbolic pattern until with the relatively high displacement (>10 mm). The end bearing-displacement curves showed linear increase at least until with the base displacement of approximately 10 mm, regardless rock mass conditions.

  • PDF

Study on Large Diameter Steel-cased Piles Socketed in Weathered and Fresh Rocks (풍화암과 연암에 근입된 대구경 말뚝의 축하중지지 거동에 관한 연구)

  • Nam Moon-Seok;Lee Min-Hee;Choi Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.3
    • /
    • pp.5-11
    • /
    • 2006
  • Two large diameter steel cased piles (TS-1 and TS-2) were installed and load-tested with the maximum load of 2000 ton at Kwang-An grand bridge. One of the test piles (TS-1) was socketed into the fresh rock and the other test pile (TS-2) was socketed into the weathered rock. Most loads were carried by the weathered rock layer at the maximum applied load for the test piles. In addition, numerical studies were performed using PENTAGON 3D and ROCKET. Based on this study, the weathered rock layer provided sufficient side resistances and possibility of an alternative embedded layer if weathered rocks are deeply layered over fresh rock, which caused difficulties and cost in construction.

End Bearing Behavior of Drilled Shafts in Rock (암반에 근입된 현장타설말뚝의 선단지지거동)

  • Kwon, Oh-Sung;Kim, Kyung-Taek;Lee, Young-Chul;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.603-610
    • /
    • 2005
  • The end bearing behavior of piles socketed in weathered/soft rock is generally dependent upon the mass conditions of rock with fractures rather than the strength of intact rock. However, there are few available data and little guidance in the prediction of the end bearing capacity of drilled shafts socketed in weathered/soft rock, considering rock mass weathering. Therefore, a database of 13 load tests was constructed first, and new empirical relationships between the base reaction modulus of piles in rock and rock mass properties were developed. No correlation was found between the compressive strengths of intact rock and the base reaction modulus of weathered/soft rock. The ground investigation data regarding the rock mass conditions(e.g. Em, Eur, RMR, RQD) was found to be highly correlated with the base reaction modulus, showing the coefficients of correlation greather than 0.7 in most cases. Additionally, the applicability of existing methods for the end bearing capacity of piles in rock was verified by comparison with the field test data.

  • PDF

Characteristics Changes of Weathered Soil by Weathering (풍화에 따른 풍화토의 특성 변화)

  • 권오순;정충기
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.53-66
    • /
    • 1998
  • Since weathered soils are made by weathering process, the characteristics of weathered soils are strongly related to the originated rock and its forming process. Investigations on the originated rock and the weathering environments that decide the forming process are indispensable for the appropriate analysis on weathered soils. In this study, forming process of weathered soil is investigated by geological viewpoint. Test results show that weathering of rock is closely related to the distribution of rock-forming mineral and forming process. Weathered granite soils have the isotropic in-situ stress state and shearing behavior caused by the non-directional characteristics of originated rock. And weathered gneiss soils have the directional characteristics that mechanical behavior is determined by internal discontinuities. It it proved that the weathering resistance of Quarte is greater than that of feldspar and mica, and it is concluded that the thickness of weathered region is greatly influenced by the distribution of rock-forming mineral.

  • PDF

A Development and Utilization of Geotechnical Information System(GTIS) of the Rock Mass in A Seoul Metropolitan Area(1) (서울일대 암반을 대상으로 한 Geotechnical Information System(GTIS)의 개발 및 활용(1))

  • 김정엽;전효택;박형동
    • Tunnel and Underground Space
    • /
    • v.5 no.4
    • /
    • pp.336-346
    • /
    • 1995
  • Geotechnical Information System (GTIS) for efficient management of three dimensional borehole data has been developed. Some problems were raised during the input process of borehole data, and alternative solutions were sought. According to the previous geotechnical reports, there is no unified weathering classification scheme. A criterion, 100 times/30cm from SPT, was turned out inappropriate to the discrimination of weathered rock from weathered soil. It has also been suggested that weathered soil, weathered rock, soft rock, and hard rock should be defined as CW, HW, MW, and SW~fresh condition. For better comparison of RQD, the use of NX size coring is recommended for the whole area although BX size coring has been used in excavated area. The limit of drilling depth up to 1 m from the top of surface of hard rock should be extended to avoid possible wrong interpretation of rock head due to the existence of corestone. The input data were analysed by geostatistical methods. It is found that the range in semivariogram is about 300m, and the variance of gneiss is greater than that of granite. It is because the granite data analysed came from almost single uniform rock mass(i.e.Seoul granite), but gneiss data came from the rock mass(i.e. Gyeonggi gneiss complex experienced several metamorphic metamorphic processes.

  • PDF

Ultimate Uplift Capacity of Permanent Anchor Embedded in Weathered Rock (풍화암에 근입된 영구 앵커의 극한인발력)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Kim, Jin-Hwang
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.195-203
    • /
    • 2001
  • The purpose of this study is to estimate ultimate uplift capacity of permanent anchor which was cast into weathered rock. The ultimate uplift capacity was estimated from the load-displacement curve of four different anchors which have different bond length. The creep test was performed for 15minutes under the maximum load of each step in order to understand the load-transfer property of permanent anchor and to decide which anchor to choose. The destruction range of soil due to the changes in load was estimated by installing dial gauge on the ground which was cast into the weathered rock. Ultimately, the study on the behavior of the anchor case into the weathered rock was performed by comparing and analyzing the estimated result of the UUC obtained by the full scale pull out test in the field with the exsting theoretical and practical results of soil and rock anchor.

  • PDF

Load Transfer Mechanism of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 하중전이기구)

  • ;Cho Sung-Min;Jung Sung-Jun;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.187-196
    • /
    • 2005
  • Since the allowable bearing capacities of piles in weathered/fractured rock are mainly governed by settlement, the load-displacement behavior of pile should be known accurately. To predict pile head settlement at the design stage, the exact understanding of the load-transfer mechanisms is essential. Therefore, in this research, the load-transfer mechanism of drilled shaft socketed into weathered rock was investigated. For the investigation, five cast-in-place concrete piles with diameters of 1,000 mm were socketed into weathered gneiss. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. A comprehensive field/laboratory testing program on weathered rock at the Held test sites was also performed to describe the in situ rock mass conditions quantitatively. And then, the effect of rock mass condition on the load transfer mechanism was investigated. The f-w (side shear resistance-displacement) curve of the pile in moderately weathered rock reached to yielding point at a for millimeter displacements, and after yielding point, the rate of resistance increment dramatically decreased. However, the f-w curve in the highly/completely weathered rock did not show the obvious yielding point, and the resistance gradually increased showing the hyperbolic pattern until relatively high displacement (>15 mm). The q-w (end bearing resistance-displacement) curves showed linear response at least until the base displacement of approximately 10 mm, regardless of rock mass conditions.

Pull - out Capacity of Ground Anchor in Weathered Rock (풍화암 지반에 정착된 앵커의 인발저항 특성)

  • 이승환;황의석;이봉열;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.435-442
    • /
    • 2002
  • Fluid Confirmation Tests(FCT) on 1500 ground Anchors install in weathered rock were carried out to investigate upper and lower limit of elastic elongation, frictional resistant of fixed anchor body, mobilized angle between anchor body and soil. All the measured data were analysed and compared with theoretical equations. The frictional angles of diaphragm wall and anchorage system in weathered rock showed nonlinear curve between upper and lower limit of standard elongation. The FCT results indicated that the frictional resistant angles increased with higher values of surcharge load. The quality assurance on the fixed anchor location was investigated by means of measuring elastic elongation during the FCT, and comparing these with theoretical design length, the quality of anchors in this particular site found to be above average standard. The results of this research works with provide valuable guide line on quality assurance of anchors system as well as resonable prediction of friction resistance between the fixed anchor body and the weathered rock.

  • PDF

Side Shear Resistance of Drilled Shafts in Rock (암반에 근입된 현장타설말뚝의 주면지지력)

  • Kwon, Oh-Sung;Kim, Byung-Chul;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.611-618
    • /
    • 2005
  • In this research, the effect of rock mass weathering on the side shear resistance of drilled shaft socketed into weathered rock was investigated. For that, a database of 23 cast-in-place concrete piles with diameters varying from 400mm to 1,500mm were socketed into weathered igneous/meta-igneous rock at four different sites. The static axial load tests were performed to examine the resistant behavior of the piles, and a comprehensive field/laboratory testing program at the field test site was also performed to describe the in situ rock mass conditions quantitatively. No correlation was found between the compressive strengths of intact rock and the side shear resistance of weathered/soft rock. The ground investigation data regarding the rock mass conditions (e.g. $E_m,\;E_{ur},\;_{plm}$, RMR, RQD, j) was found to be highly correlated with the side shear resistance, showing the coefficients of correlation greater than 0.7 in most cases. Additionally, the applicability of existing methods for the side shear resistance of piles in rock was verified by comparison with the field test data. The existing empirical relations between the compressive strength of intact rock and the side shear resistance(Horvath (1982), Rowe & Armitage(1987) etc.) appeared to overestimated the side shear resistance of all piles tested in this research unless additional consideration on the effect of rock mass weathering or fracturing was applied. The existing methods which consider the effect of rock mass condition were modified and/or extended for weathered rock mass where mass factor j is lower than 0.1, and RQD is below 50%.

  • PDF