• Title/Summary/Keyword: weather satellite

Search Result 477, Processing Time 0.025 seconds

Space-based Ocean Surveillance and Support Capability: with a Focus on Marine Safety and Security (영해관리를 위한 인공위성 원격탐사기술)

  • Yang, Chan-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.127-132
    • /
    • 2007
  • From the 1978 Seasat synthetic aperture radar(SAR) to present systems, spaceborne SAR has demonstrated the capability to image the Earth's ocean and land features over broad areas, day and night, and under most weather conditions. The application of SAR for surveillance of commercial fishing grounds can aid in the detection of illegal fishing activities and provides more efficient use of limited aircraft or patrol craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which uses the ground-based radar system has some difficulties in detecting moving ships due to the limited detection range of about 10 miles. This paper introduces the field testing results of ship detection by RADARSAT SAR imagery, and proposes a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.

  • PDF

Vector Quantization of Image Signal using Larning Count Control Neural Networks (학습 횟수 조절 신경 회로망을 이용한 영상 신호의 벡터 양자화)

  • 유대현;남기곤;윤태훈;김재창
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.1
    • /
    • pp.42-50
    • /
    • 1997
  • Vector quantization has shown to be useful for compressing data related with a wide rnage of applications such as image processing, speech processing, and weather satellite. Neural networks of images this paper propses a efficient neural network learning algorithm, called learning count control algorithm based on the frquency sensitive learning algorithm. This algorithm can train a results more codewords can be assigned to the sensitive region of the human visual system and the quality of the reconstructed imate can be improved. We use a human visual systrem model that is a cascade of a nonlinear intensity mapping function and a modulation transfer function with a bandpass characteristic.

  • PDF

A STUDY ON THE ASTRONOMICAL OBSERVATIONAL ENVIRONMENTS AT THE CHOEJUNG-SAN GEODSS SITE: II. METEOROLOGICAL STUDY (최정산 위성추적소의 천체관측 환경에 관한 조사 연구: II. 천문 관측환경에 대한 기상학적 연구)

  • Yun, Il-Hui;An, Byeong-Ho;Kang, Yong-Hui;Yun, Tae-Seok
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.197-220
    • /
    • 1996
  • The climatological characteristics at the Choejung-san site were statistically analyzed using monthly normals for the various meteorological elements at Taegu meteorological station for 30 years from January 1960 to December 1990. Various synoptic weather conditions were classified by the estimated geostrophic wind speeds and direction determined using the 850 hPa geopotential height field for 10 years from December 1980 to November 1989. Also the analysis of number of clear days were monthly and seasonally performed using the satellite infrared image data which were obtained from GMS 5 for 5 years from December 1990 to November 1995. The results reveal that the meteorological environments of astronomical observation at Choejung-san site were very good conditions during three hours after midnight except for summer season.

  • PDF

Climatic Water Balance Analysis Using NOAA/AVHRR Satellite Images (NOAA/AVHRR 위성영상을 이용한 기후학적 물수지 분석)

  • Kwon, Hyung-Joong;Shin, Sha-Chul;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.3-9
    • /
    • 2005
  • The purpose of this study was to analyze the climatic water balance of the Korean peninsula using meteorological data and the evapotranspiration (ET) derived from NOAA/AVHRR, Quantifying water balance components is important to understand the basic hydrology, In this study, a simple method to estimate actual ET was proposed based on a regression approach between NDVI and Morton's actual ET using NOAA/AVHRR data, The Mortons actual ET for land surface conditions was evaluated using a daily meteorological data from 77 weather stations, and the monthly averaged Morton's ETs for each land cover was compared with the monthly NDVIs during the year 2001. According to the climatic water balance analysis, water deficit and surplus distributed maps were created from spatial rainfall, soil moisture, and actual and potential ETs map, The results clearly showed that the temporal and spatial characteristics of dryness and wetness may be detected and mapped based on the wetness index.

Monitoring a steel building using GPS sensors

  • Casciati, Fabio;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.349-363
    • /
    • 2011
  • To assess the performance of a structure requires the measurement of global and relative displacements at critical points across the structure. They should be obtained in real time and in all weather condition. A Global Navigation Satellite System (GNSS) could satisfy the last two requirements. The American Global Position System (GPS) provides long term acquisitions with sampling rates sufficient to track the displacement of long period structures. The accuracy is of the order of sub-centimetres. The steel building which hosts the authors' laboratory is the reference case-study within this paper. First a comparison of data collected by GPS sensor units with data recorded by tri-axial accelerometers is carried out when dynamic vibrations are induced in the structure by movements of the internal bridge-crane. The elaborations from the GPS position readings are then compared with the results obtained by a Finite Element (FE) numerical simulation. The purposes are: i) to realize a refinement of the structural parameters which characterize the building and ii) to outline a suitable way for processing GPS data toward structural monitoring.

Development of Meso-scale Short Range NWP System for the Cheju Regional Meteorological Office, Korea (제주 지역에 적합한 중규모 단시간 예측 시스템의 개발)

  • Kim, Yong-Sang;Choi, Jun-Tae;Lee, Yong-Hee;Oh, Jai-Ho
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.186-194
    • /
    • 2001
  • The operational meso-scale short range NWP system was developed for Cheju Regional Meteorological Office located at Cheju island, Korea. The Central Meteorological Service Center, KMA has reported the information on numerical weather prediction every 12 hours. But this information is not enough to determine the detail forecast for the regional meteorological office because the terrain of the Korean peninsula is very complex and the resolution of the numerical model provided by KMA headquarter is too coarse to resolve the local severe weather system such as heavy rainfall. LAPS and MM5 models were chosen for three-dimentional data assimilation and numerical weather prediction tools respectively. LAPS was designed to provide the initial data to all regional numerical prediction models including MM5. Synoptic observational data from GTS, satellite brightness temperature data from GMS-5 and the composite reflectivity data from 5 radar sites were used in the LAPS data assimilation for producing the initial data. MM5 was performed on PC-cluster based on 16 pentium CPUs which was one of the cheapest distributed parallel computer in these days. We named this system as Halla Short Range Prediction System (HSRPS). HSRPS was verified by heavy rainfall case in July 9, 1999, it showed that HSRPS well resolved local severe weather which was not simulated by 30 km MM5/KMA. Especially, the structure of rainfall amount was very close to the corresponding observation. HSRPS will be operating every 6 hours in the Cheju Regional Meteorological Office from April 2000.

  • PDF

Performance Test of the WAAS Tropospheric Delay Model for the Korean WA-DGNSS (한국형 WA-DGNSS를 위한 WAAS 대류층 지연 보정모델의 성능연구)

  • Ahn, Yong-Won;Kim, Dong-Hyun;Bond, Jason;Choi, Wan-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.523-535
    • /
    • 2011
  • The precipitable water vapor (PW) was estimated using Global Navigation Satellite System (GNSS) from several GNSS stations within the Korean Peninsula. Nearby radiosonde sites covering the GNSS stations were used for the comparison and validation of test results. GNSS data recorded under typical and severe weather conditions were used to generalize our approach. Based on the analysis, we have confirmed that the derived PW values from the GNSS observables were well agreed on the estimates from the radiosonde observables within 10 mm level. Assuming that the GNSS observables could be a good weather monitoring tool, we further tested the performance of the current WAAS tropospheric delay model, UNB3, in the Korean Peninsula. Especially, the wet zenith delays estimated from the GNSS observables and from UNB3 delay model were compared. Test results showed that the modelled approach for the troposphere (i.e., UNB3) did not perform well especially under the wet weather conditions in the Korean Peninsula. It was suggested that a new model or a near real-time model (e.g., based on regional model from GNSS or numerical weather model) would be highly desirable for the Korean WA-DGNSS to minimize the effects of the tropospheric delay and hence to achieve high precision vertical navigation solutions.

The use of MODIS atmospheric products to estimate cooling degree days at weather stations in South and North Korea (MODIS 대기자료를 활용한 남북한 기상관측소에서의 냉방도일 추정)

  • Yoo, Byoung Hyun;Kim, Kwang Soo;Lee, Jihye
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.97-109
    • /
    • 2019
  • Degree days have been determined using temperature data measured at nearby weather stations to a site of interest to produce information for supporting decision-making on agricultural production. Alternatively, the data products of Moderate Resolution Imaging Spectroradiometer (MODIS) can be used for estimation of degree days in a given region, e.g., Korean Peninsula. The objective of this study was to develop a simple tool for processing the MODIS product for estimating cooling degree days (CDD), which would help assessment of heat stress conditions for a crop as well as energy requirement for greenhouses. A set of scripts written in R was implemented to obtain temperature profile data for the region of interest. These scripts had functionalities for processing spatial data, which include reprojection, mosaicking, and cropping. A module to extract air temperature at the surface pressure level was also developed using R extension packages such as rgdal and RcppArmadillo. Random forest (RF) models, which estimate mean temperature and CDD with a different set of MODIS data, were trained at 34 sites in South Korea during 2009 - 2018. Then, the values of CDD were calculated over Korean peninsula during the same period using those RF models. It was found that the CDD estimates using the MODIS data explained >74% of the variation in the CDD measurements at the weather stations in North Korea as well as South Korea. These results indicate that temperature data derived from the MODIS atmospheric products would be useful for reliable estimation of CDD. Our results also suggest that the MODIS data can be used for preparation of weather input data for other temperature-based agro-ecological models such as growing degree days or chill units.

Estimation of Near Surface Air Temperature Using MODIS Land Surface Temperature Data and Geostatistics (MODIS 지표면 온도 자료와 지구통계기법을 이용한 지상 기온 추정)

  • Shin, HyuSeok;Chang, Eunmi;Hong, Sungwook
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2014
  • Near surface air temperature data which are one of the essential factors in hydrology, meteorology and climatology, have drawn a substantial amount of attention from various academic domains and societies. Meteorological observations, however, have high spatio-temporal constraints with the limits in the number and distribution over the earth surface. To overcome such limits, many studies have sought to estimate the near surface air temperature from satellite image data at a regional or continental scale with simple regression methods. Alternatively, we applied various Kriging methods such as ordinary Kriging, universal Kriging, Cokriging, Regression Kriging in search of an optimal estimation method based on near surface air temperature data observed from automatic weather stations (AWS) in South Korea throughout 2010 (365 days) and MODIS land surface temperature (LST) data (MOD11A1, 365 images). Due to high spatial heterogeneity, auxiliary data have been also analyzed such as land cover, DEM (digital elevation model) to consider factors that can affect near surface air temperature. Prior to the main estimation, we calculated root mean square error (RMSE) of temperature differences from the 365-days LST and AWS data by season and landcover. The results show that the coefficient of variation (CV) of RMSE by season is 0.86, but the equivalent value of CV by landcover is 0.00746. Seasonal differences between LST and AWS data were greater than that those by landcover. Seasonal RMSE was the lowest in winter (3.72). The results from a linear regression analysis for examining the relationship among AWS, LST, and auxiliary data show that the coefficient of determination was the highest in winter (0.818) but the lowest in summer (0.078), thereby indicating a significant level of seasonal variation. Based on these results, we utilized a variety of Kriging techniques to estimate the surface temperature. The results of cross-validation in each Kriging model show that the measure of model accuracy was 1.71, 1.71, 1.848, and 1.630 for universal Kriging, ordinary Kriging, cokriging, and regression Kriging, respectively. The estimates from regression Kriging thus proved to be the most accurate among the Kriging methods compared.

A Study for Estimation of High Resolution Temperature Using Satellite Imagery and Machine Learning Models during Heat Waves (위성영상과 머신러닝 모델을 이용한 폭염기간 고해상도 기온 추정 연구)

  • Lee, Dalgeun;Lee, Mi Hee;Kim, Boeun;Yu, Jeonghum;Oh, Yeongju;Park, Jinyi
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1179-1194
    • /
    • 2020
  • This study investigates the feasibility of three algorithms, K-Nearest Neighbors (K-NN), Random Forest (RF) and Neural Network (NN), for estimating the air temperature of an unobserved area where the weather station is not installed. The satellite image were obtained from Landsat-8 and MODIS Aqua/Terra acquired in 2019, and the meteorological ground weather data were from AWS/ASOS data of Korea Meteorological Administration and Korea Forest Service. In addition, in order to improve the estimation accuracy, a digital surface model, solar radiation, aspect and slope were used. The accuracy assessment of machine learning methods was performed by calculating the statistics of R2 (determination coefficient) and Root Mean Square Error (RMSE) through 10-fold cross-validation and the estimated values were compared for each target area. As a result, the neural network algorithm showed the most stable result among the three algorithms with R2 = 0.805 and RMSE = 0.508. The neural network algorithm was applied to each data set on Landsat imagery scene. It was possible to generate an mean air temperature map from June to September 2019 and confirmed that detailed air temperature information could be estimated. The result is expected to be utilized for national disaster safety management such as heat wave response policies and heat island mitigation research.