• Title/Summary/Keyword: wearable energy device

Search Result 62, Processing Time 0.028 seconds

A Multi-band Wearable Device System supporting Low-Energy Protocol (CoAP 프로토콜을 이용한 다중대역 웨어러블 디바이스 제어 시스템)

  • Kang, Jeong-Yun;Jung, Chang-Su;Seo, Ji-Hun;Yoon, Yong-Tak;Han, Ki-Jun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.109-112
    • /
    • 2017
  • WBAN (Wearable Body Area Network)는 옷이나 몸에 이식된 디바이스들이 몸을 중심으로 결합이나 통신하는 네트워크를 뜻한다. 여기서 사람이 몸에 착용하는 장치인 웨어러블 디바이스는 가벼운 형태의 배터리를 요구한다. 그로 인해, 다른 기기들과는 달리 짧은 배터리 수명을 가질 뿐만 아니라 통신에 관한 제약을 발생시킨다. 따라서 본 논문에서는 저전력 프로토콜을 지원하는 다중대역 웨어러블 디바이스 제어 시스템을 제안한다. 이를 위해 BLE (Bluetooth Low Energy) 기반의 프로토콜 스택으로 BLE, 6LoWPAN (IPv6 over Low power WPAN), CoAP (Constrained Application Protocol)을 적용해 데이터 패킷 크기를 감소 시키고 BLE/Wi-Fi 선택 기능을 통해 통신 제약을 완화하고 전체적인 WBAN 에서의 소비 전력을 감소하고자한다.

  • PDF

An Android BLE Emulator for Developing Wearable Apps (웨어러블 어플리케이션 개발을 위한 안드로이드 BLE 에뮬레이터)

  • Moon, Hyeonah;Park, Sooyong;Choi, Kwanghoon
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.2
    • /
    • pp.67-76
    • /
    • 2018
  • BLE (Bluetooth Low Energy) has been extensively used for communication between mobile applications and wearable devices in IoT (Internet of Things). In developing Android applications, wearable devices, on which the applications can run, should be available because the existing Android SDK does not support any BLE emulation facility. In this study, we have designed and implemented the first Android BLE emulator. Using this, we are able to develop and test BLE-based Android applications even when without wearable devices. We have also proposed an automatic generation method of Android BLE scenarios based on graph model. We have shown that the method is useful for systematically testing BLE application protocols by running the generated scenarios on the Android BLE emulator.

An Energy-Efficient MAC Protocol for Werable Device WBAN Environment through Asymmetric Method and QoS (Wearable 장치를 사용하는 WBAN 환경에서 장치 간 비대칭적 에너지 효율과 QoS를 위한 MAC 제안)

  • Lee, Jae-Ho;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.395-404
    • /
    • 2012
  • In general, WBAN environment which use wearable devices on the human body show the different characteristics from other personal area networks. It is usually composed of sensors contacting the body and user terminal collecting the data from the sensors. The sensors are under the significant constraint of the energy resources, but the user terminal is different because it can be recharged and relatively have large energy resources. Under this characteristics, we design a new MAC protocol considering this requirements. The proposed MAC protocol can increase the energy efficiency of sensors and loads the unavoidable energy consumption to the user terminal for high energy efficiency of sensors. Additionally, the proposed MAC protocol provides the low delivery delay of the emergency information for the differentiated QoS because the emergency data requires more rapid transmission than the periodic sensed data. For this requirement, we employ the IFS (Inter Frame Space). For the efficient and objective evaluation of the proposed MAC protocol, IEEE 802.15.6 MAC is used to compare with it and we show that the advantage of the proposed MAC meet our expectation.

Two dimensional tin sulfide for photoelectric device

  • Patel, Malkeshkumar;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.389.1-389.1
    • /
    • 2016
  • The flexible solid state device has been widely studied as portable and wearable device applications such as display, sensor and curved circuits. A zero-bias operation without any external power consumption is a highly-demanding feature of semiconductor devices, including optical communication, environment monitoring and digital imaging applications. Moreover, the flexibility of device would give the degree of freedom of transparent electronics. Functional and transparent abrupt p/n junction device has been realized by combining of p-type NiO and n-type ZnO metal oxide semiconductors. The use of a plastic polyethylene terephthalate (PET) film substrate spontaneously allows the flexible feature of the devices. The functional design of p-NiO/n-ZnO metal oxide device provides a high rectifying ratio of 189 to ensure the quality junction quality. This all transparent metal oxide device can be operated without external power supply. The flexible p-NiO/n-ZnO device exhibit substantial photodetection performances of quick response time of $68{\mu}s$. We may suggest an efficient design scheme of flexible and functional metal oxide-based transparent electronics.

  • PDF

Ultrafast and flexible UV photodetector based on NiO

  • Kim, Hong-sik;Patel, Malkeshkumar;Kim, Hyunki;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.389.2-389.2
    • /
    • 2016
  • The flexible solid state device has been widely studied as portable and wearable device applications such as display, sensor and curved circuits. A zero-bias operation without any external power consumption is a highly-demanding feature of semiconductor devices, including optical communication, environment monitoring and digital imaging applications. Moreover, the flexibility of device would give the degree of freedom of transparent electronics. Functional and transparent abrupt p/n junction device has been realized by combining of p-type NiO and n-type ZnO metal oxide semiconductors. The use of a plastic polyethylene terephthalate (PET) film substrate spontaneously allows the flexible feature of the devices. The functional design of p-NiO/n-ZnO metal oxide device provides a high rectifying ratio of 189 to ensure the quality junction quality. This all transparent metal oxide device can be operated without external power supply. The flexible p-NiO/n-ZnO device exhibit substantial photodetection performances of quick response time of $68{\mu}s$. We may suggest an efficient design scheme of flexible and functional metal oxide-based transparent electronics.

  • PDF

Flexible Energy Harvesting Device based on Hybrid Piezoelectric Nanocomposite made of Lead-Free BCTZ Ceramic and Piezo-polymer (비납계 BCTZ 압전세라믹과 압전폴리머로 제작된 하이브리드 나노복합체 기반의 플렉서블 에너지 하베스팅 소자)

  • Park, Sung Cheol;Lee, Jae Hoon;Kim, Yeon-gyu;Park, Kwi-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.72-79
    • /
    • 2022
  • Piezoelectric energy harvesting technologies, which can be used to convert the electricity from the mechanical energy, have been developed in order to assist or power the wearable electronics. To realize non-toxic and biocompatible electronics, the lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 (BCTZ) nanoparticles (NPs) are being studied with a great attention as flexible energy harvesting device. Herein, piezoelectric hybrid nanocomposites were fabricated using BCTZ NPs-embedded poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] matrix to improve the performance of flexible energy harvester. Output performance of the fabricated energy device was investigated by the well-optimized measurement system during the periodically bending and releasing motions. The generated open-circuit voltage and the short-circuit current of the piezoelectric hybrid nanocomposite-based energy harvester reached up to ~15 V and ~1.1 ㎂, respectively; moreover, the instantaneous power of 3.5 ㎼ is determined from load voltage and current at the external load of 20 MΩ. This research is expected to cultivate a new approach to high-performance wearable self-powering electronics.

Design and Implementation of eRTOS Real-time Operating Systems for Wearable Computers (웨어러블 컴퓨터를 위한 저전력 실시간 운영체제 eRTOS 설계 및 구현)

  • Cho, Moon-Haeng;Choi, Chan-Woo;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.42-54
    • /
    • 2008
  • In recent years, embedded systems have been expanding their application domains from traditional embedded systems such as military weapons, robots, satellites and digital convergence systems such as celluar phones, PMP(Portable Multimedia Player), PDAs(Personal Digital Assistants) to Next Generation Personal Computers(NGPCs) such as eating PCs, wearable computers. The NGPCs are network-based, human-centric digital information devices diverged from the traditional PCs used mainly for document writing, internet searching and database management. Wearable computers with battery capacity and memory size limitations have to use real-time operating systems with small footprints and low power management techniques to provide user's QoS in spite of hardware constraints. In this paper, we have designed and implemented a low-power RTOS (called eRTOS) for wearable computers. The implemented eRTOS has 18KB footprints and the dynamic power management and the device power management schemes are adapted in it. Experimental results with wearable computer applications show that the low power techniques could save energy up to 47 %.

Piezoelectric Nanogenerators: Energy Harvesting Technology (압전 나노발전기: 에너지 수확 기술)

  • Shin, Dong-Myeong;Hwang, Yoon-Hwae
    • Vacuum Magazine
    • /
    • v.3 no.2
    • /
    • pp.17-20
    • /
    • 2016
  • Piezoelectric nanogenerators are energy harvesting device to convert a mechanical energy into an electric energy using nanostructured piezoelectric materials. This review summarizes works to date on piezoelectric nanogenerators, starting with a basic theory of piezoelectricity and working mechanism, and moving through the reports of numerous nanogenerators using nanorod arrays, flexible substrates and alternative materials. A sufficient power generated from nanogenerators suggests feasible applications for either power supplies or strain sensors of highly integratedl nano devices. Further development of nanogenerators holds promise for the development of self-powered implantable and wearable electronics.

Design of Wearable LED Display Control System Using BLE (BLE를 이용한 웨어러블 LED 디스플레이 제어 시스템 설계)

  • Hwang, Hongtaek
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.99-106
    • /
    • 2016
  • Wearable display market is a consistently growing field to handle a smart device with ease. Wearable display is an efficient device that can show the information to the user. In this paper, propose the scheme of a wearable display using LED and implement it including controlling remotely with BLE. Traditional outdoor LED display requires the dedicated controller and its software. Therefore, to control those LED display, it should implement a driver and its own way of communication. The proposed method is to ensure the independence and extensibility by separating driver module and communication module for controlling LED display. In addition, by adopting a short-range communication with Bluetooth 4.0 and a LED driver with low-power technology, it can be showed to control system configuration and display with a smart device.

A Light-weight ANN-based Hand Motion Recognition Using a Wearable Sensor (웨어러블 센서를 활용한 경량 인공신경망 기반 손동작 인식기술)

  • Lee, Hyung Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.4
    • /
    • pp.229-237
    • /
    • 2022
  • Motion recognition is very useful for implementing an intuitive HMI (Human-Machine Interface). In particular, hands are the body parts that can move most precisely with relatively small portion of energy. Thus hand motion has been used as an efficient communication interface with other persons or machines. In this paper, we design and implement a light-weight ANN (Artificial Neural Network)-based hand motion recognition using a state-of-the-art flex sensor. The proposed design consists of data collection from a wearable flex sensor, preprocessing filters, and a light-weight NN (Neural Network) classifier. For verifying the performance and functionality of the proposed design, we implement it on a low-end embedded device. Finally, our experiments and prototype implementation demonstrate that the accuracy of the proposed hand motion recognition achieves up to 98.7%.