• Title/Summary/Keyword: wear behavior

Search Result 861, Processing Time 0.028 seconds

The Effect of Boron Content and Deposition Temperature on the Microstructure and Mechanical Property of Ti-B-C Coating Prepared by Plasma-enhanced Chemical Vapor Deposition (PECVD법에 의해 증착된 Ti-B-C코팅막 내의 보론함량과 증착온도에 따른 미세구조 및 기계적 물성의 변화)

  • Ok, Jung-Tae;Song, Pung-Keun;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.3
    • /
    • pp.106-111
    • /
    • 2005
  • Ternary Ti-B-C coatings were synthesized on WC-Co and Si wafers substrates by a PECVD technique using a gaseous mixture of $TiCl_4,\;BCl_3,\;CH_4,\;Ar,\;and\; H_2$. The effects of deposition variables such as substrate temperature, gas ratio, $R_x=[BCl_3/(CH_4+BCl_3)]$ on the microstructure and mechanical properties of Ti-B-C coatings were investigated. From our instrumental analyses, the synthesized Ti-B-C coatings was confirmed to be composites consisting of nanocrystallites TiC, quasi-amorphous TiB2, and amorphous carbon at low boron content, on the contrary, nanocrystallites $TiB_2$, quasi-amorphous TiC, and amorphous carbon at relatively high boron content. The microhardness of the Ti-B-C coatings increased from $\~23 GPa$ of TiC to $\~38 GPa$ of $Ti_{0.33}B_{0.55}C_{0.11}$ coatings with increasing the boron content. The $Ti_{0.33}B_{0.55}C_{0.11}$ coatings showed lower average friction coefficient of 0.45, in addition, it showed relatively better wear behavior compared to other binary coatings of $TiB_2$ and TiC. The microstruture and microhardness value of Ti-B-C coatings were largely depend on the deposition temperature.

Microstructure of Ti-Cr-Si-N Coatings Deposited by a Hybrid System of Arc ion Plating and Sputtering Techniques (하이브리드 코팅시스템에 의해 제조된 Ti-Cr-Si-N 박막의 미세구조 및 기계적 특성연구)

  • Kang Dong Shik;Jeon Jin Woo;Song Pung Keun;Kim Kwang Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.3
    • /
    • pp.95-99
    • /
    • 2005
  • Quaternary Ti-Cr-Si-N coatings were synthesized onto steel substrates (SKD 11) using a hybrid method of arc ion plating (AIP) and sputtering techniques. For the Syntheses of Ti-Cr-Si-N coatings, the Ti-Cr-N coating process was performed substantially by a multi-cathodic AIP technique rising Cr and Ti targets, and Si was added by sputtering Si target during Ti-Cr-N deposition. In this work, comparative studies on microstructure and evaluation of mechanical properties between Ti-Cr-N and Ti-Cr-Si-N coatings were conducted. As the Si was incorporated into Ti-Cr-N coatings, the Ti-Cr-Si-N coatings showed largely increased hardness value of approximately 42 GPa than one of 28 GPa for Ti-Cr-N coatings. The average friction coefficient of Ti-Cr-N coatings largely decreased from 0.7 to 0.35 with increasing Si content up to 20 at. $\%$. In addition, wear behavior of Ti-Cr-N coatings against steel ball was much improved with Si addition due to the surface smoothening effect and tribe-chemical reaction.

MODAL TESTING AND MODEL UPDATING OF A REAL SCALE NUCLEAR FUEL ROD

  • Park, Nam-Gyu;Rhee, Hui-Nam;Moon, Hoy-Ik;Jang, Young-Ki;Jeon, Sang-Youn;Kim, Jae-Ik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.821-830
    • /
    • 2009
  • In this paper, modal testing and finite element modeling results to identify the modal parameters of a nuclear fuel rod as well as its cladding tube are discussed. A vertically standing full-size cladding tube and a fuel rod with lead pellets were used in the modal testing. As excessive flow-induced vibration causes a failure in fuel rods, such as fretting wear, the vibration level of fuel rods should be low enough to prevent failure of these components. Because vibration amplitude can be estimated based on the modal parameters, the dynamic characteristics must be determined during the design process. Therefore, finite element models are developed based on the test results. The effect of a lumped mass attached to a cladding tube model was identified during the finite element model optimization process. Unlike a cladding tube model, the density of a fuel rod with pellets cannot be determined in a straightforward manner because pellets do not move in the same phase with the cladding tube motion. The density of a fuel rod with lead pellets was determined by comparing natural frequency ratio between the cladding tube and the rod. Thus, an improved fuel rod finite element model was developed based on the updated cladding tube model and an estimated fuel rod density considering the lead pellets. It is shown that the entire pellet mass does not contribute to the fuel rod dynamics; rather, they are only partially responsible for the fuel rod dynamic behavior.

AREVA NP's enhanced accident-tolerant fuel developments: Focus on Cr-coated M5 cladding

  • Bischoff, Jeremy;Delafoy, Christine;Vauglin, Christine;Barberis, Pierre;Roubeyrie, Cedric;Perche, Delphine;Duthoo, Dominique;Schuster, Frederic;Brachet, Jean-Christophe;Schweitzer, Elmar W.;Nimishakavi, Kiran
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.223-228
    • /
    • 2018
  • AREVA NP (Courbevoie, Paris, France) is actively developing several enhanced accident-tolerant fuels cladding concepts ranging from near-term evolutionary (Cr-coated zirconium alloy cladding) to long-term revolutionary (SiC/SiC composite cladding) solutions, relying on its worldwide teams and partnerships, with programs and irradiations planned both in Europe and the United States. The most advanced and mature solution is a dense, adherent chromium coating on zirconium alloy cladding, which was initially developed along with the CEA and EDF in the French joint nuclear R&D program. The evaluation of the out-of-pile behavior of the Cr-coated cladding showed excellent results, suggesting enhanced reliability, enhanced operational flexibility, and improved economics in normal operating conditions. For example, because chromium is harder than zirconium, the Cr coating provides the cladding with a significantly improved wear resistance. Furthermore, Cr-coated samples exhibit extremely low corrosion kinetics in autoclave and prevents accelerated corrosion in harsh environments such as in water with 70 ppm Li leading to improved operational flexibility. Finally, AREVA NP has fabricated a physical vapor deposition prototype machine to coat full-length cladding tubes. This machine will be used for the manufacturing of full-length lead test rods in commercial reactors by 2019.

The Effect of Metal Fibers on the Tribology of Automotive Friction Materials (마찰재에 함유된 금속섬유와 마찰 특성의 연관관계)

  • Ko, Kil-Ju;Cho, Min-Hyung;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2001
  • Friction and wear properties of brake friction materials containing different metal fibers (Al, Cu or Steel fibers) were investigated. Based on a simple experimental formulation, friction materials with the same amount of metal fibers were tested using a pad-on-disk type friction tester. Two different materials (gray cast iron and aluminum metal matrix composite (MMC)) were used for disks rubbing against the friction materials. Results front ambient temperature tests revealed that the friction material containing Cu fibers sliding against gray cast iron disk showed a distinct negative $\mu$-v (friction coefficient vs. sliding velocity) relation implying possible stick-slip generation at low speeds. The negative $\mu$- v relation was not observed when the Cu-containing friction materials were rubbed against the Al-MMC counter surface. Elevated temperature tests showed that the friction level and the intensity of friction force oscillation were strongly affected by the thermal conductivity and melting temperature of metallic ingredients of the friction couple. Friction materials slid against cast iron disks exhibited higher friction coefficients than Al-MMC (metal matrix composite) disks during high temperature tests. On the other hand, high temperature test results suggested that copper fibers in the friction material improved fade resistance and that steel fibers were not compatible with Al-MMC disks showing severe material transfer and erratic friction behavior during sliding at elevated temperatures.

Friction and Wear Characteristics of Magneto-rheological Fluid Depend on Surface Coated by DLC and PTFE (DLC와 PTFE표면코팅에 따른 자기유변유체의 마찰 마모 특성)

  • Zhang, Peng;Lee, Kwang-Hee;Lee, Chul-Hee;Choi, JongMyong
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • A magnetorheological (MR) fluid is a smart material whose rheological behavior can be controlled by varying the parameters of the applied magnetic field. Because the damping force and shear force of an MR fluid can be controlled using a magnetic field, it is widely employed in many industrial applications, such as in vehicle vibration control, powertrains, high-precision grinding processes, valves, and seals. However, the characteristics of friction caused by iron particles inside the MR fluid need to be understood and improved so that it can be used in practical applications. Surface process technologies such as polytetrafluoroethylene (PTFE) coatings and diamond-like carbon (DLC) coatings are widely used to improve the surface friction properties. This study examines the friction characteristics of an MR fluid with different surface process technologies such as PTFE coatings and DLC coatings, by using a reciprocating friction tester. The coefficients of friction are in the following descending order: MR fluid without any coating, MR fluid with a DLC coating, and MR fluid with a PTFE coating. Scanning electron microscopy is used to observe the worn surfaces before and after the experiment. In addition, energy dispersive X-ray spectroscopy is used to analyze the chemical composition of the worn surface. Through a comparison of the results, the friction characteristics of the MR fluid based on the different coating technologies are analyzed.

Microstructure and Properties of Ni-SiC Composite Coating Layers Formed using Nano-sized SiC Particles (SiC 나노입자를 이용하여 형성한 Ni-SiC 복합도금막의 미세구조 및 특성)

  • Lee, Hong-Kee;Son, Seong-Ho;Lee, Ho-Young;Jeon, Jun-Mi
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.63-69
    • /
    • 2007
  • Ni-SiC composite coating layers were formed using two kinds of SiC nano-particles by DC electrodeposition in a nickel sulfamate bath containing SiC particles. The effect of stirring rate and SiC particle type on the microstructure and properties of Ni-SiC composite coating layers were investigated. Results revealed that the trend of deposition rate is closely related to the codeposition of SiC and the deposition rate. or nickel, and the codeposition behavior of SiC can be explained by using hydrodynamic effect due to stirring. The average roughness and friction coefficient are closely related to the codeposition of SiC and SiC particle size. It was found that the Victors microhardness of the composite coating layers increased with increasing codeposition of SiC. The composite coating layers containing smaller SiC particle showed higher hardness. This can be explained by using the strengthening mechanism resulting from dispersion hardening. Anti-wear property of the composite coating layers formed using 130 nm-sized SiC nano-particles has been improved by 2,300% compared with pure electroplated-nickel layer.

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J.;Jeon, J.M.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2021
  • Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.

A Study on Clothing Purchasing Behavior of the Uzbekistan Students Staying in Korea(1) -The Clothing Wearing Condition and Factors Affecting on the Purchase Intention for Korean Fashion Products- (우즈베키스탄 유학생들의 의복 구매행동에 관한 연구(1) -의복 착용실태와 한국 패션제품 구매의도에 미치는 영향요인 분석-)

  • Lee, Okhee
    • Journal of Fashion Business
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2019
  • The purpose of this study is to offer a base line data to facilitate entrance of a Korean fashion company into the Uzbekistan market by conducting a survey of the Uzbekistan students in Korea. This is done in order to gather data on their clothes wearing condition and factors affecting the purchase intention for Korean fashion products. In this study, a survey was conducted to 260 Uzbekistan students in Korea. The results of the study were as follows: 1) Uzbekistan students bought clothes mainly from road shops and the Internet. They bought a lot of pants, shirts, jackets, jumpers, and preferred to wear black, white, blue, and red color. The dissatisfactory parts were shown in order of the width of trousers, the length of the sleeve, and the shoulder. The most unsatisfying products were the pants and T-shirt. 2) They considered the aesthetics of the fashion products evaluation criteria, the human source and the internet advertisement of the fashion information source, and the customer service of the store selection criteria. These students showed very favorable attitude towards Hallyu and Korea. In addition, their preference and purchase intention for KFP were high. 3) The level of satisfaction on 'quality', 'color', and 'care' of KFP were very high, but lowest on the 'size' and 'price' of the clothes. 4) It was revealed that the attitude toward Hallyu and Korea, the satisfaction and preference of KFP, and demographics have a significant impact on the intention toward purchasing fashion products.

Effect of Heat Treatment on Microstructure, Mechanical Property and Corrosion Behavior of STS 440C Martensitic Stainless Steel (STS 440C 마르텐사이트계 스테인리스 강의 열처리에 따른 미세조직, 기계적 특성 및 부식 거동)

  • Kim, Mingu;Lee, Kwangmin
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.29-37
    • /
    • 2021
  • Martensitic stainless steel is commonly used in the medical implant instrument. The alloy has drawbacks in terms of strength and wear properties when applied to instruments with sharp parts. 440C STS alloy, with improved durability, is an alternative to replace 420 J2 STS. In the present study, the carbide precipitation, and mechanical and corrosion properties of STS 440C alloy are studied as a function of different heat treatments. The STS 440C alloy is first austenitized at different temperatures; this is immediately followed by oil quenching and sub-zero treatment. After sub-zero treatment, the alloy is tempered at low temperatures. The microstructures of the heat treated STS 440C alloy consist of martensite and retained austenite and carbides. Using EDX and SADP with a TEM, the precipitated carbides are identified as a Cr23C6 carbide with a size of 1 to 2 ㎛. The hardness of STS 440C alloy is improved by austenitization at 1,100 ℃ with sub-zero treatment and tempering at 200 ℃. The values of Ecorr and Icorr for STS 440C increase with austenitization temperature. Results can be explained by the dissolution of Cr-carbide and the increase in the retained austenite. Sub-zero treatment followed by tempering shows a little difference in the properties of potentiodynamic polarizations.