Microstructure of Ti-Cr-Si-N Coatings Deposited by a Hybrid System of Arc ion Plating and Sputtering Techniques

하이브리드 코팅시스템에 의해 제조된 Ti-Cr-Si-N 박막의 미세구조 및 기계적 특성연구

  • Kang Dong Shik (School of Materials Science and Engineering, Pusan National University) ;
  • Jeon Jin Woo (School of Materials Science and Engineering, Pusan National University) ;
  • Song Pung Keun (School of Materials Science and Engineering, Pusan National University) ;
  • Kim Kwang Ho (School of Materials Science and Engineering, Pusan National University)
  • Published : 2005.06.01

Abstract

Quaternary Ti-Cr-Si-N coatings were synthesized onto steel substrates (SKD 11) using a hybrid method of arc ion plating (AIP) and sputtering techniques. For the Syntheses of Ti-Cr-Si-N coatings, the Ti-Cr-N coating process was performed substantially by a multi-cathodic AIP technique rising Cr and Ti targets, and Si was added by sputtering Si target during Ti-Cr-N deposition. In this work, comparative studies on microstructure and evaluation of mechanical properties between Ti-Cr-N and Ti-Cr-Si-N coatings were conducted. As the Si was incorporated into Ti-Cr-N coatings, the Ti-Cr-Si-N coatings showed largely increased hardness value of approximately 42 GPa than one of 28 GPa for Ti-Cr-N coatings. The average friction coefficient of Ti-Cr-N coatings largely decreased from 0.7 to 0.35 with increasing Si content up to 20 at. $\%$. In addition, wear behavior of Ti-Cr-N coatings against steel ball was much improved with Si addition due to the surface smoothening effect and tribe-chemical reaction.

Keywords

References

  1. T. Cselle, A. Barimani, Surf. Coat. Technol., 76-77 (1995) 712-718 https://doi.org/10.1016/0257-8972(96)80011-9
  2. M. Witter, J. Noser, H. Melchior, J. Appl. Phys., 52(11) (1981) 6659 https://doi.org/10.1063/1.328659
  3. J.-W. He, C.-D. Bai, K.-W. Xu, N.-S. Hu, Sur. Coat. Technol., 74-75 (1995) 387-393 https://doi.org/10.1016/0257-8972(95)08371-5
  4. T. Leyendecker, O. Lemmer, S. Esser, Surf. Coat. Technol., 48 (1991) 175-178 https://doi.org/10.1016/0257-8972(91)90142-J
  5. F. Vaz, L. Rebouta, B. Almeida, P. Goudeau, J. Pacaud, J. P. Riviere, Surf. Coat. Technol., 102-121 (1999) 166-172
  6. J. J. Nainaparampil, J. S. Zabinski, A. KorenyiBoth, Thin Solid Films, 333 (1998) 88-94 https://doi.org/10.1016/S0040-6090(98)00840-2
  7. D. B. Lee, M. H. Kim, Y. C. Lee, S. C. Kwon, Surf. Coat. Technol., 141 (2001) 232-239 https://doi.org/10.1016/S0257-8972(01)01237-3
  8. K. H. Lee, C. H. Park, Y. S. Yoon, J. J. Lee, Thin Solid Films, 385 (2001) 167-173 https://doi.org/10.1016/S0040-6090(00)01911-8
  9. S. Veprfek, S. Reiprich, Thin Solid Films, 268 (1995) 64-71 https://doi.org/10.1016/0040-6090(95)06695-0
  10. F. Vaz, L. Rebouta, S. Ramos, M. F. da Silva, J.C. Soares, Surf. Coat. Technol., 108-109 (1998) 236-240 https://doi.org/10.1016/S0257-8972(98)00620-3
  11. M. Diserens, J. Patscheider, F. Levy, Surf. Coat. Technol., 108-109 (1998) 241-246 https://doi.org/10.1016/S0257-8972(98)00560-X
  12. S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H.-D. Mannling, P. Nesladek, G. Dollinger, A. Bergmaier. Surf. Coat. Technol., 133-134 (2000)152-159 https://doi.org/10.1016/S0257-8972(00)00957-9
  13. J. Patscheider, T. Zehnder, M. Diserens, Surf. Coat. Technol., 146-147 (2001) 201-208 https://doi.org/10.1016/S0257-8972(01)01389-5
  14. I.-W. Park, S. R. Choi, J. H. Suh, C.-G. Park, K. H. Kim, Thin Solid Films, 447-448 (2004) 443-448 https://doi.org/10.1016/S0040-6090(03)01122-2
  15. J-H. Jeon, S. R. Choi, W. S. Chung, K. H. Kim, Surf. Coat. Technol., 188-189 (2004) 415-419 https://doi.org/10.1016/j.surfcoat.2004.08.042
  16. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc, Minnesota, (1995) 238-240
  17. K. H. Kim, S.-R. Choi, S.-Y. Yoon, Surf. Coat. Technol., 298 (2002) 243-248
  18. M. P. Delplancke-Ogletree, O. R. Monteiro, Surf. Coat. Technol., 108-109 (1998) 484-488 https://doi.org/10.1016/S0257-8972(98)00572-6