• Title/Summary/Keyword: weapon effectiveness

Search Result 169, Processing Time 0.023 seconds

A Study on the Effective Method to Producing Data for The ROKA Live Fire Training Range Safety (한국군 실 사격 훈련간 효율적인 안전지대 데이터 구축 방안 연구)

  • Lee, June-Sik;Choi, Bong-Wan;Oh, Hyun-Seung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.64-77
    • /
    • 2015
  • An effective method for produce munitions effectiveness data is to calculate weapon effectiveness indices in the US military's Joint Munitions Effectiveness Manuals (JMEM) and take advantage of the damage evaluation model (GFSM) and weapon Effectiveness Evaluation Model (Matrix Evaluator). However, a study about the Range Safety that can be applied in the live firing exercises is very insufficient in the case of ROK military. The Range Safety program is an element of the US Army Safety Program, and is the program responsible for developing policies and guidance to ensure the safe operation of live-fire ranges. The methodology of Weapon Danger Zone (WDZ) program is based on a combination of weapon modeling/simulation data and actual impact data. Also, each WDZ incorporates a probability distribution function which provides the information necessary to perform a quantitative risk assessment to evaluate the relative risk of an identified profile. A study of method to establish for K-Range Safety data is to develop manuals (pamphlet) will be a standard to ensure the effective and safe fire training at the ROK military education and training and environmental conditions. For example, WDZs are generated with the WDZ tool as part of the RMTK (Range Managers Tool Kit) package. The WDZ tool is a Geographic Information System-based application that is available to operational planners and range safety manager of Army and Marine Corps in both desktop and web-based versions. K-Range Safety Program based on US data is reflected in the Korean terrain by operating environments and training doctrine etc, and the range safety data are made. Thus, verification process on modified variables data is required. K-Range Safety rather than being produced by a single program, is an package safety activities and measures through weapon danger zone tool, SRP (The Sustainable Range Program), manuals, doctrine, terrain, climate, military defence M&S, weapon system development/operational test evaluation and analysis to continuously improving range safety zone. Distribution of this K-range safety pamphlet is available to Army users in electronic media only and is intended for the standing army and army reserve. Also publication and distribution to authorized users for marine corps commands are indicated in the table of allowances for publications. Therefore, this study proposes an efficient K-Range Safety Manual producing to calculate the danger zones that can be applied to the ROK military's live fire training by introducing of US Army weapons danger zone program and Range Safety Manual

Development of Terrain Analysis S/W for Military Use of DTM (수치지형 자료의 모델링 및 지형분석 S/W의 개발)

  • Mun Seung-Hwan;Choe Byeong-Gyu;Hwang Mun-Ho
    • Journal of the military operations research society of Korea
    • /
    • v.17 no.2
    • /
    • pp.31-43
    • /
    • 1991
  • The fire effectiveness and the operationability of the ground weapon system (such as tank, armored vehicle, howitzer, MLRS, ${\cdots}$), whose operations are usually happened on the ground, are dependent not only on their performances but also on the terrain environments. Especially, the artillery weapons systems' effectiveness is largely varied, because their maneuverability (such as translation, occupation of their sites) and the fire effectiveness are very dependent on the terrain. In this paper, presented are the methods how to analyze the terrain using the digital terrain data. And a software (which are implemented on the IBM PC compatible personal computer) is developed for the analysis of the terrain using the various method of computer Aided Geometric Design and Modeling. The S/W is expected to be very useful for the evaluation of the artillery weapon systems and for the commanders' decision making.

  • PDF

Effectiveness Analysis of Chemical Warfare System through Interoperation between Engineering Level and Engagement Level Models : Methodology and Environment (공학급/교전급 모델의 연동 시뮬레이션을 통한 화학전 효과도 분석 : 방법론 및 구현 환경)

  • Seok, Moon-Gi;Song, Hae-Sang;Kim, Tag-Gon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.71-81
    • /
    • 2014
  • It is an important issue to evaluate the effectiveness of chemical warfare through modeling and simulation(M&S) technology. In this paper, we propose the M&S methodology and environment for the chemical warfare for effectiveness analysis. In detail, for modeling perspective, we propose three fundamental component models according to their behaviors, which are a chemical weapon, a detecting device system, and an engaging unit system. Among proposed models, the chemical weapon and the detecting device system models are represented by engineering-level system models, whereas the engaging unit system model are described as an engagement-level system model. For simulation perspective, we apply a hybrid simulation environment using High Level Architecture (HLA) to interoperate with the proposed engineering and engagement-level models. The proposed M&S methodology and environment enables to evaluate the effectiveness of the chemical warfare system considering the doctrines, the performance of device or weapon, and weather factors. To verify the efficiency of the proposed methodology and environment, we experimented three categorized case studies, which are related with those considering factors.

LOS Analysis Algorithm for Mid-range Guided Weapon System (중거리지대공 유도무기체계 적용을 위한 가시선 분석 알고리듬 연구)

  • Lee, Han-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.642-649
    • /
    • 2010
  • LOS analysis is used for optimal deployment of mid-range guided weapon system or system engagement effectiveness simulation. Comparing to real-world, LOS analysis includes error sources such as coarse terrain data resolution, refraction of radio waves, and several ideal assumptions. In this research, exact LOS algorithm under assumption of constant earth curvature and error analysis of that is investigated. It proved that LOS algorithm under assumption of constant earth curvature has negligible error in mid-range guidance weapon system's scope.

A Study on the Framework for Analyzing the Effectiveness of Cyber Weapon Systems Associated with Cyberspace and Physical Space (사이버 공간과 물리 공간이 연계된 사이버 무기체계의 효과성 분석 프레임워크 연구)

  • Jang, Ji-su;Kim, Kook-jin;Yoon, Suk-joon;Park, Min-seo;Ahn, Myung-Kil;Shin, Dong-kyoo
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.111-126
    • /
    • 2022
  • As operations that were only conducted in physical space in the past change to operations that include cyberspace, it is necessary to analyze how cyber attacks affect weapon systems using cyber systems. For this purpose, it would be meaningful to analyze a tool that analyzes the effects of physical weapon systems in connection with cyber. The ROK military has secured and is operating the US JMEM, which contains the results of analyzing the effects of physical weapon systems. JMEM is applied only to conventional weapon systems, so it is impossible to analyze the impact of cyber weapon systems. In this study, based on the previously conducted cyber attack damage assessment framework, a framework for analyzing the impact of cyber attacks on physical missions was presented. To this end, based on the MOE and MOP of physical warfare, a cyber index for the analysis of cyber weapon system effectiveness was calculated. In addition, in conjunction with JMEM, which is used as a weapon system effect manual in physical operations, a framework was designed and tested to determine the mission impact by comparing and analyzing the results of the battle in cyberspace with the effects of physical operations. In order to prove the proposed framework, we analyzed and designed operational scenarios through domestic and foreign military manuals and previous studies, defined assets, and conducted experiments. As a result of the experiment, the larger the decrease in the cyber mission effect value, the greater the effect on physical operations. It can be used to predict the impact of physical operations caused by cyber attacks in various operations, and it will help the battlefield commander to make quick decisions.

A Feasibility Study on the Estimation of a Ship's Susceptibility Based on the Effectiveness of its Anti-Air Defense Systems (함정 대공방어시스템의 효과도를 활용한 피격성 추정 가능성 연구)

  • GeonHui Lee;SeokTae Yoon;YongJin Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.57-64
    • /
    • 2023
  • Recently, the increased use of anti-ship guided missiles, a weapon system that detects and attacks targets in naval engagement, has come to pose a major threat to the survivability of ships. In order to improve the survivability of ships in response to such anti-ship guided missiles, many studies of means to counteract them have been conducted in militarily advanced countries. The integrated survivability of a ship can be largely divided into susceptibility, vulnerability, and recoverability, and is expressed as the conditional probability, if the ship is hit, of damage and recovery. However, as research on susceptibility is a major military secret of each country, access to it is very limited and there are few publicly available data. Therefore, in this study, a possibility of estimating the susceptibility of ships using an anti-air defense system corresponding to anti-ship guided missiles was reviewed. To this, scenarios during engagement, weapon systems mounted to counter threats, and maximum detection/battle range according to the operational situation of the defense weapon system were defined. In addition, the effectiveness of the anti-air defense system and susceptibility was calculated based on the performance of the weapon system, the crew's ability to operate the weapon system, and the detection probability of the detection/defense system. To evaluate the susceptibility estimation feasibility, the sensitivity of the detailed variables was reviewed, and the usefulness of the established process was confirmed through sensitivity analysis.

A Study on Simulation of Future Ground System Effectiveness Analysis Model with Communication Effects (통신효과를 고려한 미래지상체계 효과분석 시뮬레이션에 대한 연구)

  • Shin, Sunwoo;Lee, Jaeyeong;Bae, Sungmin;Kim, Chongman
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.168-180
    • /
    • 2017
  • Purpose: In this research, we develop an effectiveness analysis simulation model using Agent Based Modeling with Communication Effects for the development of a new weapon system. Methods: To describe the future battlefield that has more complexity, we develop Agent Based Modeling to describe communication Effects. We use the communication theory (Path-Loss Model) and the real map. Results: We have compared simulation model with real map and simulation model without real map. The Blue Survival Ratio of simulation model with real map is worse than one without real map since the performance of communication gets lower. Conclusion: There are many studies about the effectiveness analysis of a weapon system. Most of previous researches assumed no communication error. In the real world, however, it's not appropriate assumption. Therefore, this study considers the communication error and shows that it is important factor in the effectiveness analysis.

Interoperation between Engineering- and Engagement-level Models for System Effectiveness Analysis (체계 효과도 분석을 위한 공학/교전 모델 연동 시뮬레이션 기술 연구)

  • Hong, Jeong-Hee;Kim, Tag-Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.319-326
    • /
    • 2010
  • Effectiveness analysis of weapon system has been accomplished using engagement-level model alone. However, most previous works are prone to errors due to lack of behavioral information about the weapon systems. In order to overcome these limitations, this paper proposes an interoperation approach between the engagement- and engineering-level models. The proposed approach enables the engagement-level model to be supported by the engineering-level model representing the detailed behavior of weapon systems. Our methodology consider a limited combat situation including operational environments, dynamics and operational errors of weapons, and engagement orders. The paper describes a formalization of the system effectiveness analysis and defines an interface for interoperation between engagement- and engineering-level models. Then, we perform an anti-torpedo combat simulation as a case study.

Development of Simulation Logic for Wargame Model Based on Warhead Detonation Test Data (탄두 기폭실험 결과를 활용한 워게임모델 모의논리 개발)

  • Seil An;Yongseon Lee;Sungho Choi ;Sangwoo Han
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.2
    • /
    • pp.13-25
    • /
    • 2024
  • In the performance analysis of a weapon system, the combat effectiveness is difficult to go beyond the conceptual level in the early stages of development. This is especially true in the case of new concept of weapon system that has never existed before. In this study, with the aim of analyzing the effectiveness of small personal guided weapons, the design of the warhead and the detonation test were carried out and the results were analyzed. Afterwards, trajectory of fragments were calculated from the results, and it is applied to the anti-personnel effectiveness logic which is a part of combat simulation tool. At the same time, delivery accuracy logic was constructed from Monte-Carlo simulation with 6-DOF trajectory model. Subsequent simulated experiments were conducted with test scenarios to confirm the simulation logic reflecting the results of the warhead detonation tests for verifying the simulation approach of weapon systems, and it was confirmed that the simulation logic incorporating the results of the warhead detonation tests functioned properly.

A Study on the Attrition Rate of Facility Using the WinJMEM (WinJMEM 모형을 이용한 시설물 피해산정에 관한 연구)

  • 백종학;이상헌
    • Journal of the military operations research society of Korea
    • /
    • v.28 no.2
    • /
    • pp.70-84
    • /
    • 2002
  • This paper deals with the attrition rate of major facility such as a particular building that is one of the most important target in the war time. In order to estimate the attrition rate, we use JAWS, WinJMEM which are programed by JTCG/ME of AMSAA and spreadsheet package which is able to assist the limitation of those programs and calculate all the procedure of this computation. This method uses the effectiveness index(El) which indicates the numerical measure of the effectiveness of a given weapon of a given target. The range error probable(REP) and the deflection error probable(DEP) in the ground plane also should be used. Those mean the measure of delivery accuracy of the weapon system. In this paper, it is improved that the El can be obtained from the regression analysis using the weight of the warhead explosive as the independent variable. It implies that we are able to obtain the El and the conditional probability of damage of the enemy weapon. After that, the single-sortie probability of damage can be computed using WinJMEM or another assistant program such as the spreadsheet package which shows the result immediately.