• Title/Summary/Keyword: weakly sufficient set

Search Result 5, Processing Time 0.023 seconds

WEAKLY SUFFICIENT SETS FOR WEIGHTED SPACES hΦ-(B)

  • Khoi, Le Hai
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.215-227
    • /
    • 2011
  • In this paper we introduce a class $h^{-\infty}_{\Phi}(\mathbb{B})$ of weighted spaces of harmonic functions in the unit ball $\mathbb{B}$ of $\mathbb{R}^n$. We dene weakly sufficient sets in this space and give an explicit construction of countable sets of such a type. Various examples of weight functions are also discussed.

FIXED POINTS OF COUNTABLY CONDENSING MULTIMAPS HAVING CONVEX VALUES ON QUASI-CONVEX SETS

  • Hoonjoo Kim
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.279-288
    • /
    • 2023
  • We obtain a Chandrabhan type fixed point theorem for a multimap having a non-compact domain and a weakly closed graph, and taking convex values only on a quasi-convex subset of Hausdorff locally convex topological vector space. We introduce the definition of Chandrabhan-set and find a sufficient condition for every countably condensing multimap to have a relatively compact Chandrabhan-set. Finally, we establish a new version of Sadovskii fixed point theorem for multimaps.

LEFT QUASI-ABUNDANT SEMIGROUPS

  • Ji, Zhulin;Ren, Xueming;Wang, Yanhui
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1159-1172
    • /
    • 2019
  • A semigroup S is called a weakly abundant semigroup if its every $\tilde{\mathcal{L}}$-class and every $\tilde{\mathcal{R}}$-class contains an idempotent. Our purpose is to study an analogue of orthodox semigroups in the class of weakly abundant semigroups. Such an analogue is called a left quasi-abundant semigroup, which is a weakly abundant semigroup with a left quasi-normal band of idempotents and having the congruence condition (C). To build our main structure theorem for left quasi-abundant semigroups, we first give a sufficient and necessary condition of the idempotent set E(S) of a weakly abundant semigroup S being a left quasi-normal band. And then we construct a left quasi-abundant semigroup in terms of weak spined products. Such a result is a generalisation of that of Guo and Shum for left semi-perfect abundant semigroups. In addition, we consider a type Q semigroup which is a left quasi-abundant semigroup having the PC condition.

OPTIMALITY AND DUALITY IN NONDIFFERENTIABLE MULTIOBJECTIVE FRACTIONAL PROGRAMMING USING α-UNIVEXITY

  • Gupta, Rekha;Srivastava, Manjari
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.359-375
    • /
    • 2014
  • In this paper, a multiobjective nondifferentiable fractional programming problem (MFP) is considered where the objective function contains a term involving the support function of a compact convex set. A vector valued (generalized) ${\alpha}$-univex function is defined to extend the concept of a real valued (generalized) ${\alpha}$-univex function. Using these functions, sufficient optimality criteria are obtained for a feasible solution of (MFP) to be an efficient or weakly efficient solution of (MFP). Duality results are obtained for a Mond-Weir type dual under (generalized) ${\alpha}$-univexity assumptions.