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FIXED POINTS OF COUNTABLY CONDENSING

MULTIMAPS HAVING CONVEX VALUES ON

QUASI-CONVEX SETS

Hoonjoo Kim

Abstract. We obtain a Chandrabhan type fixed point theorem
for a multimap having a non-compact domain and a weakly closed
graph, and taking convex values only on a quasi-convex subset of
Hausdorff locally convex topological vector space. We introduce
the definition of Chandrabhan-set and find a sufficient condition for
every countably condensing multimap to have a relatively compact
Chandrabhan-set. Finally, we establish a new version of Sadovskii
fixed point theorem for multimaps.

1. Introduction and preliminaries

In 1967, Sadovskii [19] defined the condensing single-valued function
and proved that a condensing function from a closed bounded convex
subset of a Banach space into itself has a fixed point. Daher [7] gener-
alized the concept of the condensing function to countably condensing
functions, which is condensing only on countable sets.

Mönch [14] introduced a new class of single-valued functions, later
called a Mönch type function by Dhage [9] and he proved a fixed-point
theorem for it. Mönch [14], Mönch and von Harten [15], Deimling [8],
Guo et al. [10], Agarwal and O’Regan [1] and O’Regan and Precup [17]
obtained fixed point theorems for Mönch type operators and applied
them to differential and integral equations. A Mönch type multimaps
was relaxed to Chandrabhan multimaps by Dhage [9].

A multimap (or simply, a map) F : X ⊸ Y is a function from a set X
into the power set of Y . Throughout this paper, we assume that maps
have nonempty values otherwise explicitly stated or obvious from the
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context. We abbreviate a Hausdorff locally convex topological vector
space as HLCTVS.

The following fixed point theorem is stated in Cardinali and Papalini
[4]:

Theorem 1.1. Let E be a HLCTVS, K be a nonempty compact
subset of E and G : K ⊸ K be a map taking closed values and with
the properties

(1) there exists a quasi-convex subset A of K such that A = K and
G(x) is convex for every x ∈ A; and

(2) G has a weakly closed graph.

Under these conditions, there exists an x ∈ K such that x ∈ G(x).

Cardinali, O’Regan and Rubbioni [3] defined a Mönch-set for a mul-
timap defined on HLCTVS and got a Mönch type fixed point theorem
whose Mönch hypothesis is weaker than those of [5], [6], [17].

In Section 2, we extend Theorem 1.1 to a new fixed point theorem
for multimaps defined on non-compact subsets of HLCTVS. Motivated
by [3], we introduce the definition of a Chandrabhan-set for a multimap
and verify that the sufficient conditions for the existence of the Mönch-
set and the Chandrabhan-set are the same. We obtain a Chandrabhan
type fixed point theorem for a map having a non-compact domain and
a weakly closed graph, and taking convex values only on a quasi-convex
subset of HLCTVS. This result generalizes those of [3], [5], [6], [13], [17].

In Section 3, we find conditions for that every countably condensing
map has a relatively compact Chandrabhan-set if the domain of the
map is a subset of a HLCTVS. In this case, the HLCTVS satisfies the
Krein-Smulian property and its compact subsets are separable. Finally,
we establish a new version of Sadovskii fixed point theorem for maps in
HLCTVS only with the Krein-Smulian property.

Definition 1.2. A nonempty subset Y of a HLCTVS E is said
to be quasi-convex (or almost convex) if for any V ∈ V, where V is
a neighborhood system of the origin 0 in E, and for any finite set
{y1, y2, ..., yδ} ⊂ Y , there exists a finite set {z1, z2, ..., zn} ⊂ Y such
that zi − yi ∈ V for each i = 1, 2, ..., n and co{z1, z2, ..., zn} ⊂ Y .

For example, deleting a certain subset of the boundary of a closed
convex set, we get a quasi-convex set. For details, see [11, 18].

Definition 1.3. ([4, 5].) Let X be a nonempty subset of a HLCTVS
E. It is said that a map G : X ⊸ E has a weakly closed graph in
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X × E if for every net(xδ)δ in X, xδ → x, x ∈ X, and for every net
(yδ)δ, yδ ∈ G(xδ), yδ → y, then S(x, y) ∩ G(x) ̸= ∅, where S(x, y) =
{x+ λ(y − x) : λ ∈ [0, 1]}.

2. Chandrabhan-sets and fixed point theorems

Lemma 2.1. Let E be a HLCTVS, X be a closed convex subset of
E, B be a relatively compact subset of X and F : X ⊸ X be a map.
Then there exists a subset K of X such that K = co(B ∪ F (K)).

Proof. Put K0 = co(B), Kn+1 = co(B ∪ F (Kn)) for n = 0, 1, 2, · · ·
and K =

⋃∞
n=0Kn. By induction, K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ Kn+1 · · · .

Note that K is convex, since Kn is convex for n = 0, 1, 2, · · · .
Now we can show that K = co(B ∪ F (K)). For each n, co(B ∪

F (Kn)) ⊆ co(B ∪F (K)), so K =
⋃∞

n=0 co(B ∪F (Kn)) ⊆ co(B ∪F (K)).
On the other hand, K is a convex set containing B and

⋃∞
n=0 F (Kn) =

F (K), hence co(B ∪ F (K)) ⊆ K.

We extend Theorem 1.1 with the following new fixed-point theorem
for multimaps defined on noncompact domains:

Theorem 2.2. Let E be a HLCTVS, X be a closed convex subset
of E and Y be a subset of X such that K ∩ Y is quasi-convex and
K ∩ Y = K for any relatively compact convex subset K of X. Assume
that F : X ⊸ X is a map with closed values satisfying the followings:

(1) F (x) is convex for every x ∈ Y ;
(2) F has a weakly closed graph; and
(3) there exists a relatively compact subset B such that K = co(B ∪

F (K)) is relatively compact.

Then F has a fixed point.

Proof. Consider the map T : K ⊸ K defined by T (x) = F (x) ∩ K
for all x ∈ K, where the set K = co(B ∪ F (K)) is found in Lemma 2.1.
Then the map T has nonempty values. In fact, fixed x ∈ K, there exists
a net (xδ)δ in K such that xδ → x. Let us consider a net (yδ)δ such that
yδ ∈ F (xδ). Since F (K) ⊂ K and K is compact, there is an y ∈ K such
that yδ → y. By (2), S(x, y) ∩ F (x) ̸= ∅. As the convexity of K implies
S(x, y) ⊂ K, T (x) = F (x) ∩K ̸= ∅.

The above discussion also shows that ∅ ≠ S(x, y) ∩ F (x) = S(x, y) ∩
F (x) ∩K = S(x, y) ∩ T (x), so T has a weakly closed graph in K ×K.
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Furthermore Y ∩ K is dense in K. As F takes closed values in X
and convex values in Y, T satisfies all the assumptions of Theorem 1.1.
Therefore, there exists x ∈ K such that x ∈ T (x) ⊂ F (x).

Definition 2.3. Let X be a convex subset of a HLCTVS E, B be
a relatively compact subset of X and F : X ⊸ X be a given map. We
say that a set A ⊂ X a Chandrabhan-set for F if A = co(B∪F (A)) and
there exists a countable subset C of A with A = C.

When B = {x0} for some x0 ∈ X, A is called a Mönch-set for F in
[3].

Consider a HLCTVS E satisfying the following properties:

(X1) If A is a compact subset of E, then co(A) is compact.
(X2) For any relatively compact subset A of X, there exists a countable

set B ⊂ A such that B = A.

If E is a quasi-complete HLCTVS, then (X1) holds. (X1) is called
the Krein-Smulian property. If E is metrizable, then (X2) holds. For
details, see [3, 16].

Lemma 2.4. Let E be a HLCTVS satisfying (X1) and (X2), X be a
closed convex subset of E and B be a relatively compact subset of X.
Suppose that a multimap F : X ⊸ X maps compact sets into relatively
compact sets. Then F has a Chandrabhan-set.

Proof. As the proof of Lemma 2.1, put K0 = co(B), Kn+1 = co(B ∪
F (Kn)) for n = 0, 1, 2, · · · and K =

⋃∞
n=0Kn, then K = co(B ∪ F (K)).

Let us prove by induction that Kn is relatively compact for n =
0, 1, 2, · · · . Assumption (X1) implies that K0 is relatively compact and
so is K1. Suppose that Kn is relatively compact for n ≥ 2. Because

Kn+1 ⊂ co(B∪F (Kn)) and F maps compact sets into relatively compact
sets, Kn+1 is relatively compact.

Now, we verify that K is a Chandrabhan-set K for F . By (X2), there
exists a countable subset Cn ofKn such that Cn = Kn for n = 0, 1, 2, · · · .
Put C =

⋃∞
n=0Cn, then C = K, since K =

⋃∞
n=0Kn =

⋃∞
n=0Kn =⋃∞

n=0Cn =
⋃∞

n=0Cn = C.

Using Lemma 2.4, we obtain the following Chandrabhan type fixed
point theorem, which specifies the conditions in Theorem 2.2:

Theorem 2.5. Let E be a HLCTVS satisfying (X1) and (X2), X be
a closed convex subset of E and Y be a subset of X such that K ∩ Y is
quasi-convex and K ∩ Y = K for any relatively compact convex subset
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K of X. Assume that F : X ⊸ X is a map with closed values satisfying
the followings:

(1) F (x) is convex for every x ∈ Y ;
(2) F has a weakly closed graph;
(3) F maps compact sets into relatively compact sets; and
(C) there exists a relatively compact subsetB such that a Chandrabhan-

set for F is relatively compact.

Then F has a fixed point.

Corollary 2.6. Let E be a HLCTVS satisfying (X1) and (X2).
Let X be a closed convex subset of E and Y be a subset of X such that
K∩Y is quasi-convex and K ∩ Y = K for any relatively compact convex
subset K of X. Assume that F : X ⊸ X is a map with closed values
satisfying conditions (1), (2) and (3) in Theorem 2.5 and the following:

(M) there exists an x0 ∈ X such that a Mönch-set for F is relatively
compact.

Then F has a fixed point.

For X = Y and F has a compact values, Corollary 2.6 reduces to
Theorem 5.2 in [3]. Cardinali et al. [3] improved all the theorems in the
literature (see, e.g. Theorem 3.1 in [5], Theorem 3.1 in [6]) by assuming
(M) instead of the following condition:

(M1) There exists an x0 ∈ X such that every Mönch-set for F is rela-
tively compact.

Since separable Banach spaces endowed with the weak topology sat-
isfy (X1) and (X2), we obtain the following corollary from Theorem 2.5:

Corollary 2.7. Let X be a closed convex subset of a separable Ba-
nach space E endowed with the weak topology Tw, and Y be a subset of
X such that K ∩Y is quasi-convex and K ∩ Y

w
= K

w
for any relatively

w-compact convex subset K of X. Assume that F : X ⊸ X is a map
with closed values satisfying the followings:

(1) F (x) is convex for every x ∈ Y ;
(2) F has a w-weakly closed graph;
(3) F maps w-compact sets into relatively w-compact sets; and
(C) there exists a relatively w-compact subsetB such that a Chandrab-

han-set for F is relatively w-compact.

Then F has a fixed point.
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Remark 2.8. (1) Note that K
w
is the weak closure of K. If K

w
is

weakly compact (w-compact, for short), the set K is said to be relatively
w-compact. It is said that F has a w-weakly closed graph in X ×X if
it has weakly closed graph in X ×X with respect to Tw.

(2) If X = Y , B = {x0} and assuming (M1) instead of (C), Corollary
2.7 becomes Theorem 3.1 [6].

Since Banach spaces satisfy (X1) and (X2), we get the following corol-
lary which generalizes Theorem 2.1 in [13].

Corollary 2.9. Let X be a closed convex subset of a Banach space
E, and Y be a subset of X such that K∩Y is quasi-convex and K ∩ Y =
K for any relatively compact convex subset K of X. Assume that F :
X ⊸ X is a map with compact values satisfying the followings:

(1) F (x) is convex for every x ∈ Y ;
(2) F has a weakly closed graph;
(3) F maps compact sets into relatively compact sets; and
(C) there exists a relatively compact subsetB such that a Chandrabhan-

set for F is relatively compact.

Then F has a fixed point.

3. Fixed point theorems for countably condensing maps

Definition 3.1. Let E be a HLCTVS satisfying (X1), Pb(E) = {H ⊂
E : H ̸= ∅, H bounded}. A function β : Pb(E) ⊸ R+

0 is called a measure
of noncompactness (MNC, for short) on E provided that the following
conditions hold for any A,B ∈ Pb(E):

(1) β(coA) = β(A); and
(2) A is compact iff β(A) = 0.

A set additive MNC β is an MNC β that satisfies the following con-
dition:

(3) β(A ∪B) = max{β(A), β(B)}.
For details, see [2, 12]. Clearly a set additive MNC β satisfies the

properties

(4) monotonicity: A ⊂ B implies β(A) ≤ β(B); and
(5) nonsingularity: β(A ∪ {x}) = β(A) for every x ∈ E.

Definition 3.2. Let X be a nonempty subset of a HLCTVS E sat-
isfying (X1) and let β be a MNC. A map F : X ⊸ E is said to be
(countably) condensing if



Fixed points of countably condensing multimaps 285

(I) F (X) is bounded; and
(II) β(F (B)) < β(B) for all (countable) bounded subsets B of X with

β(B) > 0.

The condition (II) can be equivalently formulated as

(II′) for all (countable) bounded subsets B of X, the relation β(B) ≤
β(F (B)) implies that B is compact.

From now on, we only consider a countably condensing map defined
with respect to a set additive MNC.

Lemma 3.3. Let X be a closed convex subset of a HLCTVS E
satisfying (X1) and (X2). Suppose that a countably condensing map
F : X ⊸ X maps compact sets into relatively compact sets. Then
every Chandrabhan-set for F is relatively compact.

Proof. LetB be a relatively compact subset ofX andA be a Chandra-
bhan-set for F according to Lemma 2.4, that is, A = co(B ∪ F (A)) and
A = C with a countable subset C of A.

Every point of C can be written as a finite combination of points
belonging to the set B∪F (A), so there exists a countable setM ⊂ A such
that C ⊂ co(B ∪ F (M)). By the definition of a countably condensing
map, F (X) is bounded, and the sets A, C and M are also bounded.
Since β(B) = 0,

(*) β(C) ≤ β(co(B ∪ F (M))) = β(B ∪ F (M)) = β(F (M)).

Let us show that β(M) = 0. If not, then β(F (M)) < β(M), because
F is countably condensing. Combining above argument, we obtain

β(C) ≤ β(F (M)) < β(M) ≤ β(A) = β(A) = β(C) = β(C),

a contradiction. Therefore M is compact.
Now, we prove β(A) = 0. As F maps compact sets into relatively

compact sets, β(F (M)) = 0. Hence β(F (M)) = 0 and β(C) = 0 by (*),
which implies that β(A) = β(C) = 0, that is, A is compact.

By Lemma 3.3 and Theorem 2.5, we obtain the following theorem:

Theorem 3.4. Let E be a HLCTVS satisfying (X1) and (X2), X be
a closed convex subset of E and Y be a subset of X such that K ∩ Y is
quasi-convex and K ∩ Y = K for any relatively compact convex subset
K of X. Assume that F : X ⊸ X is a countably condensing map with
closed values satisfying the followings:

(1) F (x) is convex for every x ∈ Y ;
(2) F has a weakly closed graph; and
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(3) F maps compact sets into relatively compact sets.

Then F has a fixed point.

Remark 3.5. (1) If E is a Banach space, Theorem 3.4 reduces to
Theorem 3.4 in [13].

(2) For X = Y and F has a compact convex values, Theorem 3.4
is Theorem 5.4 in [3]. A special case of Theorem 5.4 in [3] is Theorem
4.1 in [6] where E is a separable Banach space endowed with the weak
topology Tw.

4. Sadovskii type theorem

Without assuming neither that E satisfies (X2) nor that the map
F maps compact sets into relatively compact sets, we obtain a follow-
ing fixed point theorem for condensing maps defined with respect to a
nonsingular MNC:

Theorem 4.1. Let E be a HLCTVS satisfying (X1), X be a closed
convex subset of E and Y be a subset of X such that K ∩ Y is quasi-
convex and K ∩ Y = K for any relatively compact convex subset K of
X. Assume that F : X ⊸ X has a closed valued condensing map with
respect to a nonsingular MNC and satisfies the followings:

(1) F (x) is convex for every x ∈ Y ; and
(2) F has a weakly closed graph.

Then F has a fixed point.

Proof. For x0 ∈ X, consider the family {Hα}α of all subsets of E that
each satisfies the following properties:

(i) x0 ∈ Hα;
(ii) Hα is closed and convex; and
(iii) F (X ∩Hα) ⊂ Hα.

Put H =
⋂

αHα, then H is well-defined, since X ∈ {Hα}α.
Let us prove that H ∈ {Hα}α. Clearly, H satisfies (i) and (ii). More-

over, since F (X ∩H) ⊂ F (X ∩Hα) ⊂ Hα for all α, H satisfies (iii).
Now, to prove co({x0} ∪ F (H)) = H, let us first verify co({x0} ∪

F (H)) ⊂ H. As X ∈ {Hα}α, H ⊂ X and using property of (iii) of H,
we obtain F (H) = F (X ∩H) ⊂ H. Because H satisfies (i) and (ii),

(**) co({x0} ∪ F (H)) ⊂ H.

To verify that H ⊂ co({x0} ∪ F (H)), it is enough to show co({x0} ∪
F (H)) ∈ {Hα}α. The set co({x0} ∪ F (H)) satisfies (i) and (ii) and by
(**), F (X ∩ co({x0}∪F (H))) ⊂ F (X ∩H) = F (H) ⊂ co({x0}∪F (H)).
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Finally, we will show that H is compact. Because F (X) is bounded
and H ⊂ X, so is F (H). Therefore H = co({x0} ∪ F (H)) is bounded.
Suppose that β(H) > 0, then

β(F (H)) < β(H) = β(co({x0} ∪ F (H))) = β(F (H))

which is a contradiction. Therefore β(H) = 0 and the closed set H is
compact.

As F |H satisfies all the hypotheses of Theorem 1.1, there exists x ∈ H
such that x ∈ F (x).

Remark 4.2. (1) For X = Y , Theorem 4.1 becomes Theorem 5.4 in
[3]. Theorem 4.1 in [6], where X = Y and E is a separable Banach space
endowed with the weak topology Tw, is a special case of Theorem 4.1.

(2) The proof of Theorem 4.1 uses the idea of [3, 6], but simplifies it
by removing unnecessary assumptions.
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