• Title/Summary/Keyword: weakly discretely generated

Search Result 2, Processing Time 0.015 seconds

ON SPACES IN WHICH COMPACT-LIKE SETS ARE CLOSED, AND RELATED SPACES

  • Hong, Woo-Chorl
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.297-303
    • /
    • 2007
  • In this paper, we study on C-closed spaces, SC-closed spaces and related spaces. We show that a sequentially compact SC-closed space is sequential and as corollaries obtain that a sequentially compact space with unique sequential limits is sequential if and only if it is C-closed [7, 1.19 Proposition] and every sequentially compact SC-closed space is C-closed. We also show that a countably compact WAP and C-closed space is sequential and obtain that a countably compact (or compact or sequentially compact) WAP-space with unique sequential limits is sequential if and only if it is C-closed as a corollary. Finally we prove that a weakly discretely generated AP-space is C-closed. We then obtain that every countably compact (or compact or sequentially compact) weakly discretely generated AP-space is $Fr\acute{e}chet$-Urysohn with unique sequential limits, for weakly discretely generated AP-spaces, unique sequential limits ${\equiv}KC{\equiv}C-closed{\equiv}SC-closed$, and every continuous surjective function from a countably compact (or compact or sequentially compact) space onto a weakly discretely generated AP-space is closed as corollaries.

ON SPACES IN WHICH THE THREE MAIN KINDS OF COMPACTNESS ARE EQUIVALENT

  • Hong, Woo-Chorl
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.477-484
    • /
    • 2010
  • In this paper, we introduce a new property (*) of a topological space and prove that if X satisfies one of the following conditions (1) and (2), then compactness, countable compactness and sequential compactness are equivalent in X; (1) Each countably compact subspace of X with (*) is a sequential or AP space. (2) X is a sequential or AP space with (*).