• Title/Summary/Keyword: weak Hardy space

Search Result 6, Processing Time 0.028 seconds

WEAK BOUNDEDNESS FOR THE COMMUTATOR OF n-DIMENSIONAL ROUGH HARDY OPERATOR ON HOMOGENEOUS HERZ SPACES AND CENTRAL MORREY SPACES

  • Lei Ji;Mingquan Wei;Dunyan Yan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.1053-1066
    • /
    • 2024
  • In this paper, we study the boundedness of the commutator Hb formed by the rough Hardy operator H and a locally integrable function b from homogeneous Herz spaces to homogeneous weak Herz spaces. In addition, the weak boundedness of Hb on central Morrey spaces is also established.

WEAK FACTORIZATIONS OF H1 (ℝn) IN TERMS OF MULTILINEAR FRACTIONAL INTEGRAL OPERATOR ON VARIABLE LEBESGUE SPACES

  • Zongguang Liu;Huan Zhao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1439-1451
    • /
    • 2023
  • This paper provides a constructive proof of the weak factorizations of the classical Hardy space H1(ℝn) in terms of multilinear fractional integral operator on the variable Lebesgue spaces, which the result is new even in the linear case. As a direct application, we obtain a new proof of the characterization of BMO(ℝn) via the boundedness of commutators of the multilinear fractional integral operator on the variable Lebesgue spaces.

Lq-ESTIMATES OF MAXIMAL OPERATORS ON THE p-ADIC VECTOR SPACE

  • Kim, Yong-Cheol
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.367-379
    • /
    • 2009
  • For a prime number p, let $\mathbb{Q}_p$ denote the p-adic field and let $\mathbb{Q}_p^d$ denote a vector space over $\mathbb{Q}_p$ which consists of all d-tuples of $\mathbb{Q}_p$. For a function f ${\in}L_{loc}^1(\mathbb{Q}_p^d)$, we define the Hardy-Littlewood maximal function of f on $\mathbb{Q}_p^d$ by $$M_pf(x)=sup\frac{1}{\gamma{\in}\mathbb{Z}|B_{\gamma}(x)|H}{\int}_{B\gamma(x)}|f(y)|dy$$, where |E|$_H$ denotes the Haar measure of a measurable subset E of $\mathbb{Q}_p^d$ and $B_\gamma(x)$ denotes the p-adic ball with center x ${\in}\;\mathbb{Q}_p^d$ and radius $p^\gamma$. If 1 < q $\leq\;\infty$, then we prove that $M_p$ is a bounded operator of $L^q(\mathbb{Q}_p^d)$ into $L^q(\mathbb{Q}_p^d)$; moreover, $M_p$ is of weak type (1, 1) on $L^1(\mathbb{Q}_p^d)$, that is to say, |{$x{\in}\mathbb{Q}_p^d:|M_pf(x)|$>$\lambda$}|$_H{\leq}\frac{p^d}{\lambda}||f||_{L^1(\mathbb{Q}_p^d)},\;\lambda$ > 0 for any f ${\in}L^1(\mathbb{Q}_p^d)$.

HARDY TYPE ESTIMATES FOR RIESZ TRANSFORMS ASSOCIATED WITH SCHRÖDINGER OPERATORS ON THE HEISENBERG GROUP

  • Gao, Chunfang
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.235-254
    • /
    • 2022
  • Let ℍn be the Heisenberg group and Q = 2n + 2 be its homogeneous dimension. Let 𝓛 = -∆n + V be the Schrödinger operator on ℍn, where ∆n is the sub-Laplacian and the nonnegative potential V belongs to the reverse Hölder class $B_{q_1}$ for q1 ≥ Q/2. Let Hp𝓛(ℍn) be the Hardy space associated with the Schrödinger operator 𝓛 for Q/(Q+𝛿0) < p ≤ 1, where 𝛿0 = min{1, 2 - Q/q1}. In this paper, we consider the Hardy type estimates for the operator T𝛼 = V𝛼(-∆n + V )-𝛼, and the commutator [b, T𝛼], where 0 < 𝛼 < Q/2. We prove that T𝛼 is bounded from Hp𝓛(ℍn) into Lp(ℍn). Suppose that b ∈ BMO𝜃𝓛(ℍn), which is larger than BMO(ℍn). We show that the commutator [b, T𝛼] is bounded from H1𝓛(ℍn) into weak L1(ℍn).

A NOTE ON END PROPERTIES OF MARCINKIEWICZ INTEGRAL

  • DING, YONG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.1087-1100
    • /
    • 2005
  • In this note we give the mapping properties of the Marcinkiewicz integral !-to. at some end spaces. More precisely, we first prove that !-to. is a bounded operator from H$^{1,($\mathbb{R) to H$^{1, ($\mathbb{R). As a corollary of the results above, we obtain again the weak type (1,1) boundedness of $\mu$$_{, but the condition assumed on n is weaker than Stein's condition. Finally, we show that !-to. is bounded from BMO($\mathbb{R) to BMO($\mathbb{R). The results in this note are the extensions of the results obtained by Lee and Rim recently.