• 제목/요약/키워드: wavy plate

검색결과 25건 처리시간 0.028초

Aerodynamic characteristics of wavy splitter plate on circular cylinder

  • Liang Gao;J. Jegadeeshwaran;S. Ramaswami;S. B. M. Priya;S. Nadaraja Pillai
    • Wind and Structures
    • /
    • 제37권5호
    • /
    • pp.375-382
    • /
    • 2023
  • The aerodynamic characteristics of a circular cylinder with a wavy splitter plate were experimentally studied, specifically the potential reduction of drag and fluctuations in drag. To study the individual effects of amplitude and wavelength, the experiments were conducted by varying one parameter at a time while holding the other one constant. To study the effect of amplitude (A), the wavelength to diameter ratio (λ/D) was fixed at 0.115 and the amplitude to diameter ratio (A/D) was varied as 0.005, 0.010, 0.015 and 0.020. Similarly, to study the effect of wavelength, A/D was fixed as 0.020 and λ/D was varied as 0.46, 0.23, 0.15 and 0.12. Analysis of the data indicated that the wavy splitter plate caused a significant reduction in both the magnitude and the fluctuation of drag. The variation of aerodynamic forces and the fluctuations with them corresponding to different Reynolds numbers were computed and the spectral aspects of fluctuating forces due to vortex shedding is analysed and effective reduction in both shedding frequency and magnitude was observed.

LNG FPSO 액화공정에 적용되는 플레이트 핀 열교환기의 열전달 특성 (Heat Transfer Characteristics of Plate-fin Heat Exchanger Using LNG FPSO Liquefaction Process)

  • 유선일;김현우;정영권;윤정인;박승하;김창수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권6호
    • /
    • pp.798-805
    • /
    • 2010
  • LNG FPSO 액화 플랜트와 같은 초저온 분야에서 플레이트 핀 열교환기의 국내 연구 실적은 전무한 상태이다. 본 연구에서는 플레이트 핀 열교환기의 독자적 기술을 확보하기 위해 응축 열전달 특성을 이론 및 실험적으로 검증하였다. 시뮬레이션 결과 Plain fin을 제외한 Serrated, Wavy fin은 압력 69bar, 온도 $-140^{\circ}C$에서 응축되었고, 국소열전달계수는 Serrated, Wavy, Plain fin 순으로 높게 나타났다. 실험결과는 정상상태에서 10분간 데이터를 획득하였고 시뮬레이션 데이터값과 12% 미만의 오차범위를 만족하였다.

Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube

  • Moradi-Dastjerdi, Rasool;Momeni-Khabisi, Hamed
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.277-299
    • /
    • 2016
  • In this paper, free vibration, forced vibration, resonance and stress wave propagation behavior in nanocomposite plates reinforced by wavy carbon nanotube (CNT) are studied by a mesh-free method based on first order shear deformation theory (FSDT). The plates are resting on Winkler-Pasternak elastic foundation and subjected to periodic or impact loading. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In the mesh-free analysis, moving least squares (MLS) shape functions are used for approximation of displacement field in the weak form of motion equation and the transformation method is used for imposition of essential boundary conditions. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of elastic foundation coefficients, plate thickness and time depended loading are examined on the vibrational and stresses wave propagation responses of the nanocomposite plates reinforced by wavy CNT.

난류 모형에 따른 수직 평판 위 파동 액막류의 수치해석 연구 (Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models)

  • 민준기;박일석
    • 대한기계학회논문집B
    • /
    • 제38권5호
    • /
    • pp.373-380
    • /
    • 2014
  • 액막류는 다양한 산업분야에 적용되는 쉘-튜브 열교환기의 주요 열교환기구로 오랫동안 연구되어왔다. 액막류의 한쪽 경계는 고정벽에 접하고 있지만 반대편에서는 기체 영역과 경계를 형성하므로 액막 레이놀즈 수가 증가함에 따라 쉽게 불안정해지는 특징을 가지고 있다. 따라서 레이놀즈 수가 증가함에 따라 자유표면 파동 현상이 나타나는데, 층류 영역에서는 큰 진폭의 고립파가, 난류 천이 이후에는 낮은 진폭의 물결파가 나타난다. 액막류의 열전달 성능은 액막의 두께에 의해 크게 지배받는데 액막류에 동반된 파동은 액막 두께의 시공간적 변화를 의미하는 것이므로 이에 대한 정보를 해석적으로 수집하는 것은 액막류 열전달 성능을 예측하는데 필수적이다. 본 연구에서는 낮은 진폭의 물결파를 동반한 난류 액막류에 대하여 여러 가지 난류 모형을 적용한 해석결과들을 실험결과와 비교함으로써 난류 모형들에 대한 평가를 실시하였다.

Free vibration analysis of a laminated trapezoidal plate with GrF-PMC core and wavy CNT-reinforced face sheets

  • Yingqun Zhang;Qian Zhao;Qi Han;N. Bohlooli
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.275-291
    • /
    • 2023
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) core and FG wavy CNT-reinforced face sheets. The porous graphene foam possessing 3D scaffold structures has been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the plate thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. It is explicated that 3D-GrF skeleton type and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. The plate's normalized natural frequency decreased and the straight carbon nanotube (w=0) reached the highest frequency by increasing the values of the waviness index (w).

Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.541-557
    • /
    • 2018
  • This paper presents the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite sandwich annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) sandwich plate has smooth variation of CNT fraction along the thickness direction. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of Pasternak's elastic foundation coefficients, sandwich plate thickness, face sheets thickness and plate aspect ratio are investigated on the free vibration of the sandwich plates with wavy CNT-reinforced face sheets. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free.

층류-파동 액막 유동에 대한 계면 전단응력의 영향 (Effects of interfacial shear stress on laminar-wavy film flow)

  • 김병주;정은수;김정헌
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.992-1000
    • /
    • 1998
  • In the present study the behavior of laminar-wavy film flowing down a vertical plate was studied analytically. The effects of film Reynolds number and interfacial shear stress on the mean film thickness, wave amplitude, wave length, and wave celerity were analysed. The anayltical results on the periodic-wave falling film showed good agreements with experimental data for Re < 100. As the film Reynolds number increased, mean film thickness, wave amplitude, and wave celerity increased, but wave length decreased. Depending on the direction of interfacial shear stress, the shape of wavy interface was disturbed significantly, especially for the intermediate-wave. As the interfacial shear stress increased, for the periodic-wave film, wave amplitude and wave celerity increased, but mean film thickness and wave length decreased.

수직평판을 타고 흐르는 층류파동액막류에 대한 체적분율식 시간차분법에 따른 해석 결과 비교 (Comparison of Numerical Results for Laminar Wavy Liquid Film Flows down a Vertical Plate for Various Time-Differencing Schemes for the Volume Fraction Equation)

  • 박일석;김영조;민준기
    • 대한기계학회논문집B
    • /
    • 제35권11호
    • /
    • pp.1169-1176
    • /
    • 2011
  • 액막류는 레이놀즈수 및 유동 안정성에 의해 파동이 없는 층류액막류, 파동을 동반한 층류 액막류 및 난류액막류로 구분된다. 파동액막류는 강한 비선형성에 의해 매우 복잡하여 기존에는 주로 실험적 연구가 진행되었다. 수치적 해석은 주로 파동이 없는 경우에 국한되었으며 여러 가지 자유표면 해석기법을 이용하여 평균액막두께를 예측하였다. 이 연구에서는 층류액막류의 파동현상을 레이놀즈수 20~1000 범위에서 수치해석하였다. 이 때, VOF 자유표면 해석기법에 기반한 여러 가지 수치방법을 비교 연구하였으며 평균액막두께, 파동속도 및 진폭을 실험결과와 비교하였다.

대면적 가공물의 마이크로 그루빙에서 고속 절삭 깊이 제어를 통한 미세형상의 정밀도 향상 (Improvement of Form Accuracy of Micro-Features on Thin, Large-area Plate using Fast Depth Adjustment in Micro-grooving)

  • 강동배;손성민;이효렬;안중환
    • 한국생산제조학회지
    • /
    • 제22권3호
    • /
    • pp.408-413
    • /
    • 2013
  • Micro-features such as grooves and lenses, which perform optical functions in flat displays, should be manufactured with a good form accuracy because this is directly related to their optical performance. As the size of the display increases, it is very difficult to maintain a high relative accuracy because of the inherent geometric errors such as the waviness of a large-area plate. In this paper, the optical effect of these geometric errors is investigated, and surface-referenced micro-grooving to measure and compensate for such geometric errors on line is proposed to improve the form accuracy of the micro-grooves. A PZT-based fast depth adjustment servo system is implemented in the tool holder to maintain a uniform groove depth in reference to the wavy surface. Through experiments, the proposed method is shown to be an efficient way to produce high-quality micro- grooves on a wavy die surface.

충돌벽 노즐의 저속 제트에 의한 액막 특성 연구 (A Study on the Characteristics of the Liquid Sheet Formed by a Splash Plate Nozzle at Low Jet Velocities)

  • 박희웅;김지담;송가은;강보선
    • 한국분무공학회지
    • /
    • 제29권2호
    • /
    • pp.75-82
    • /
    • 2024
  • In this study, the thickness of the liquid sheet formed by a splash plate nozzle at low jet velocities was measured by the direct contact method. The spatial distribution characteristics of the sheet thickness in the radial and circumferential directions, and the effects of jet velocity and liquid viscosity were analyzed. The wavy surface was observed for low viscosity water, but not for high viscosity glycerol solutions. The sheet thickness decreased as the circumferential angle or the distance from the impinging point increased. The sheet thickness increased as the liquid viscosity increased. Comparison with the theoretical predictions for two impinging jets showed some differences from the measurement results.