• 제목/요약/키워드: wavelet-based texture fusion image

검색결과 6건 처리시간 0.023초

웨이브릿 기반 텍스처 융합 영상을 이용한 위성영상 자료의 분류 정확도 향상 연구 (The Classification Accuracy Improvement of Satellite Imagery Using Wavelet Based Texture Fusion Image)

  • 황화정;이기원;권병두;류희영
    • 대한원격탐사학회지
    • /
    • 제23권2호
    • /
    • pp.103-111
    • /
    • 2007
  • 지금까지 위성영상 정보 처리 분야에서는 분광정보를 이용한 영상분석과 시각적 해석 및 자동 분류에 대한 연구가 주로 수행되었으나, 최근에는 영상자료에서 시각적으로 나타나지 않는 특성이나 공간정보의 추출을 위한 여러 시도가 이루어지고 있다. 본 연구에서는 영상정보의 특성 추출기법인 텍스처 영상 생성기법과 웨이브릿 변환을 연계하여 웨이브릿 기반 텍스처 융합 영상에 대한 연구를 수행하였다. 또한 이러한 영상이 분류 정확도에 어떻게 기여하는 가를 분석하기 위한 적용 사례로 도심지 공간분석과 칼데라 주변지역의 지질학적 구조분석을 수행하였다 영상 분석 시 공간정보 활용을 위한 텍스처 영상 생성기법과 웨이브릿 기반 텍스처 융합 영상 생성기법을 사용하면 원본영상만을 사용하였을 때보다 높은 분류정확도를 보였다. 고해상도 영상을 사용한 도심지의 경우 원본영상에 텍스처영상과 웨이브릿 기반 텍스처 융합 영상을 모두 활용한 경우의 분류정확도가 가장 높은 값을 보였다. 이는 상세화소의 변화가 매우 중요한 도심지의 특성상, 세밀한 공간정보가 최대로 활용되었기 때문으로 해석되어진다. 또한 중 저해상도 영상을 사용한 지질학적 구조분석의 경우 원본영상에 텍스처 영상만을 활용한 경우가 가장 높은 분류정확도를 보였다. 이는 칼데라를 중심으로 한 비교적 크기가 큰 지질학적 구조 분석 시 고도변화와 지열분포 등의 정보가 적당히 단순화 될 필요가 있었기 때문인 것으로 해석된다. 따라서 이러한 기법들을 실제 연구에 적용하기 위해서는 연구의 목적과 위성영상의 해상도 등의 정보를 모두 고려하여 적절한 기법을 잘 적용하는 것이 중요하다.

WAVELET-BASED FOREST AREAS CLASSIFICATION BY USING HIGH RESOLUTION IMAGERY

  • Yoon Bo-Yeol;Kim Choen
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.698-701
    • /
    • 2005
  • This paper examines that is extracted certain information in forest areas within high resolution imagery based on wavelet transformation. First of all, study areas are selected one more species distributed spots refer to forest type map. Next, study area is cut 256 x 256 pixels size because of image processing problem in large volume data. Prior to wavelet transformation, five texture parameters (contrast, dissimilarity, entropy, homogeneity, Angular Second Moment (ASM≫ calculated by using Gray Level Co-occurrence Matrix (GLCM). Five texture images are set that shifting window size is 3x3, distance .is 1 pixel, and angle is 45 degrees used. Wavelet function is selected Daubechies 4 wavelet basis functions. Result is summarized 3 points; First, Wavelet transformation images derived from contrast, dissimilarity (texture parameters) have on effect on edge elements detection and will have probability used forest road detection. Second, Wavelet fusion images derived from texture parameters and original image can apply to forest area classification because of clustering in Homogeneous forest type structure. Third, for grading evaluation in forest fire damaged area, if data fusion of established classification method, GLCM texture extraction concept and wavelet transformation technique effectively applied forest areas (also other areas), will obtain high accuracy result.

  • PDF

Texture Image Retrieval Using DTCWT-SVD and Local Binary Pattern Features

  • Jiang, Dayou;Kim, Jongweon
    • Journal of Information Processing Systems
    • /
    • 제13권6호
    • /
    • pp.1628-1639
    • /
    • 2017
  • The combination texture feature extraction approach for texture image retrieval is proposed in this paper. Two kinds of low level texture features were combined in the approach. One of them was extracted from singular value decomposition (SVD) based dual-tree complex wavelet transform (DTCWT) coefficients, and the other one was extracted from multi-scale local binary patterns (LBPs). The fusion features of SVD based multi-directional wavelet features and multi-scale LBP features have short dimensions of feature vector. The comparing experiments are conducted on Brodatz and Vistex datasets. According to the experimental results, the proposed method has a relatively better performance in aspect of retrieval accuracy and time complexity upon the existing methods.

Seafloor Classification Based on the Texture Analysis of Sonar Images Using the Gabor Wavelet

  • Sun, Ning;Shim, Tae-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제27권3E호
    • /
    • pp.77-83
    • /
    • 2008
  • In the process of the sonar image textures produced, the orientation and scale factors are very significant. However, most of the related methods ignore the directional information and scale invariance or just pay attention to one of them. To overcome this problem, we apply Gabor wavelet to extract the features of sonar images, which combine the advantages of both the Gabor filter and traditional wavelet function. The mother wavelet is designed with constrained parameters and the optimal parameters will be selected at each orientation, with the help of bandwidth parameters based on the Fisher criterion. The Gabor wavelet can have the properties of both multi-scale and multi-orientation. Based on our experiment, this method is more appropriate than traditional wavelet or single Gabor filter as it provides the better discrimination of the textures and improves the recognition rate effectively. Meanwhile, comparing with other fusion methods, it can reduce the complexity and improve the calculation efficiency.

질감특징들의 융합을 이용한 영상검색 (Image Retrieval Using the Fusion of Texture Features)

  • 천영덕;서상용;김남철
    • 한국통신학회논문지
    • /
    • 제27권3A호
    • /
    • pp.258-267
    • /
    • 2002
  • 본 논문에서는 저자 등이 질감특징으로 제안한 바 있는 BDIP(block difference of inverse probabilities) 모멘트 특징과 새로이 질감특징으로 제안하는 BVLC(block variation of local correlation coefficient) 모멘트 특징을 기존의 웨이브렛 모멘트 질감특징과 융합하여 칼라영상을 대상으로 검색하는 내용기반 검색법을 제시하였다. 효율적인 융합을 위해 각 특징벡터들에 대한 가중치는 전체 DB에서 각 특징벡터의 성분이 가지는 표준편차와 각 특징벡터가 가지는 차원과의 곱의 역수로 하였다. 시험영상으로는 Corel Draw Photo DB와 Vistex 질감영상 DB를 사용하였다. 실험결과, 제안한 검색기법은 일반영상뿐만 아니라 질감영상에서도 웨이브렛 모멘트 특징보다 7%정도 성능이 향상됨을 확인할 수 있었다.

BDIP와 BVCL의 질감특징을 이용한 영상검색 (Image Retrieval Using Texture Features BDIP and BVLC)

  • 천영덕;서상용;김남철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.183-186
    • /
    • 2001
  • In this paper, we first propose new texture features, BVLC (block variation of local correlation coefficients) moments, for content-based image retrieval (CBIR) and then present an image retrieval method based on the fusion of BDIP and BVLC moments. BDIP uses the local probabilities in image blocks to extract valley and edges well. BVLC uses the variations of local correlation coefficients in images blocks to measure texture smoothness well. In order not to be affected with the movement, rotation, and size of an object, the first and second moments of BDIP and BVLC are used for CBIR. Corel DB and Vistex DB are used to evaluate the performance of the proposed retrieval method. Experimental results show that the presented retrieval method yields average 12% better performance than the method using only BDIP or BVLC moments and average 13% better performance than the method using wavelet moments.

  • PDF