• 제목/요약/키워드: wavelet shrinkage

검색결과 39건 처리시간 0.022초

잡음이 있는 X선 프로젝션에 적합한 웨이블렛 기반 영상재구성 (Wavelet based Image Reconstruction specific to Noisy X-ray Projections)

  • 이남용;문종익
    • 융합신호처리학회논문지
    • /
    • 제7권4호
    • /
    • pp.169-177
    • /
    • 2006
  • 이 논문의 목적은 X선의 감쇠를 이용한 측정에서 발생하는 여러 종류의 잡음을 효과적으로 제거하는데 적합한 영상재구성 방법을 제안하는 것이다. 구체적으로, X선의 방출기와 검출기의 필연적인 기계적 오류에 의해 발생하는 원형모양 오류와 전반적인 관측오차와 푸리에 변환기반 재구성 과정에서 나타나는 줄무늬 모양 잡음을 효과적으로 제거하기 위해 웨이블렛 방법을 제안한다. 원형모양 오류를 프로젝션에서 제거하기 위해 해당 잡음이 각도방향으로 강한 상관관계를 가지고 있음을 이용하여, 평균화된 정보에서 해당 잡음의 강도를 추정하고 이를 웨이블렛 축소법을 통해 제거하는 방법을 제안한다. 또한, 전반적인 잡음 제거와 영상재구성을 위해 웨이블렛-배규렛 분해법을 제안한다. 제안된 방법은 기존의 푸리에 변환을 기반으로 하는 방법에 비해 원형모양 오류와 영상재구성에 있어서 우수한 영상을 제공함을 시뮬레이션을 통해 확인하였다.

  • PDF

잡음과 오류제거를 위한 웨이블렛기반 반복적 영상복원 (Iterative Image Restoration Based on Wavelets for De-Noising and De-Ringing)

  • 이남용
    • 융합신호처리학회논문지
    • /
    • 제5권4호
    • /
    • pp.271-280
    • /
    • 2004
  • 본 논문에서는 반복적 영상복원과정에서 자주 등장하는 경계관련 오류와 물체관련 오류를 효과적으로 제거하기 위한 새로운 반복적 영상복원방법을 제안하고자 한다. 제안한 방법은 반복과정내부에 웨이블렛 축소법을 이용한 변형된 CGM(Conjugate Gradient Method)을 이용하였다. 제안한 방법은 CGM과 같은 빠른 복원과 함께 웨이블렛 축소법에 의한 적응적인 잡음제거와 오류제거를 동시에 제공한다. 효과적인 잡음제거와 오류제거를 동시에 얻기 위해 웨이블렛 축소는 위치에 따라 변하는 웨이블렛 축소규칙을 사용하였다. 기존의 반복적 영상복원 알고리즘인 LR(Lucy-Richardson), CGM과의 비교실험을 통해 제한한 방법이 LR에 비교해서는 전체적으로 향상된 복원과 물체관련오류가 거의 없다는 측면, 그리고 CGM과의 비교에서는 물체 및 경계 관련오류가 거의 없다는 측면에서 기존의 방법에 비해 우수하다는 것을 확인하였다.

  • PDF

웨이블릿 변환을 이용한 하이브리드 방식의 잡음 제거 알고리즘 (Hybrid Noise Reduction Algorithm Using Wavelet Transform)

  • 서영호;김동욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.367-368
    • /
    • 2007
  • In this paper, we propose a new de-noising algorithm for 2 dimensional image using discrete wavelet transform. The proposed algorithm consists of edge detection in spatial domain, zero-tree estimation, subband estimation, and shrinkage algorithm. The results from it shows that the denoised image which Is damaged by 20% gaussian noise has 28dB quality for the original one.

  • PDF

A New Method for Selecting Thresholding on Wavelet Packet Denoising for Speech Enhancement

  • Kim, I-jae;Kim, Hyoung-soo;Koh, Kwang-hyun;Yang, Sung-il;Y. Kwon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제20권2E호
    • /
    • pp.25-29
    • /
    • 2001
  • In this paper, we propose a new method for selecting the threshold on wavelet packet denoising. In selecting threshold, the method using median is not efficient. Because this method can not recover unvoiced signal corrupted by noise. So we partition a speech signal corrupted by noise into the pure noise section and voiced section using autocorrelation and entropy. The autocorrelation and entropy can reflect disorder of noise. The new method yields more improved denoising effect. Especially unvoiced signal is very nicely reconstructed, and SNR is improved.

  • PDF

불규칙한 샘플 영상에 대한 POCS 기반 보간법 (POCS Based Interpolation Method for Irregularly Sampled Image)

  • 이종화;이철희
    • 방송공학회논문지
    • /
    • 제16권4호
    • /
    • pp.669-679
    • /
    • 2011
  • 본 논문에서는 불규칙한 샘플 영상에 대해 비지역적 블록 기반의 웨이블릿 영상 잡음 제거 기법을 포함하는 POCS (projection on convex sets) 보간법을 제안한다. 이 방법은 보간을 수행하기 위한 볼록 집합을 정의하고, 해당 볼록 집합으로 반복 투영하여 최종 보 간 영상을 생성한다. 우선 Delaunay 삼각화를 이용하여 불규칙한 샘플 영상을 균일 격자 영상으로 투영한다. 두 번째 단계에서 비지역 적 블록 기반의 웨이블릿 영상 잡음 제거 기법을 적용하고, 세 번째 단계에서 원본 관찰된 화소값을 주입한다. 두 번째 단계와 세 번 째 단계를 반복적으로 투영하고, 마지막 단계로 경계선 검출을 통해 비경계 영역에 비지역적 잡음 제거 기법을 수행하여 최종 보간 영 상을 생성한다. 본 논문에서는 여러 실험 영상을 사용하여 기존 제안된 기법 대비 제안한 기법의 효율성을 입증하였다.

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taeksoo;Han, Ingoo
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1999년도 춘계공동학술대회: 지식경영과 지식공학
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support fer multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To date, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques' results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taek-Soo;Han, In-Goo
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To data, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

웨이브렛 변환 영역에서 적응문턱값을 이용한 적외선영상의 잡음제거 (Denoising of Infrared Images by an Adaptive Threshold Method in the Wavelet Transformed Domain)

  • 조창호;이상효;이종용;조도현;이상철
    • 전자공학회논문지 IE
    • /
    • 제43권4호
    • /
    • pp.65-75
    • /
    • 2006
  • 본 연구에서는, 열상장비(thermal imaging equipment)로 촬영한 적외선 영상의 화질을 저해하는 주된 요소인 임펄스 잡음(impulse noise)과 가우시안 잡음(Gaussian noise)을 제거하는 웨이브렛 변환 기반 방법을 논의한다. 효과적인 잡음제거를 위하여 잡음으로 손상된 적외선 영상에 대하여 상세 부분대역 웨이브렛 계수에 대한 미분과 중앙절대편차(median absolute deviation)를 이용한 문턱값 설정방법을 제안하였다. 특히, 임펄스성 잡음제거를 위해서 웨이브렛 계수를 미분하여 임펄스 잡음의 위치를 나타내는 이진 마스크를 생성하는 방법을 채택하였다. 이와 같은 방법에 의해, 모서리와 잡음을 구분하는 적응 문턱 값 설정을 보다 효율적으로 얻을 수 있었고, 기존 웨이브렛 수축법과 비교를 통하여 제안한 잡음제거 방법의 타당성을 확인하였다.

A REVIEW ON DENOISING

  • Jung, Yoon Mo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권2호
    • /
    • pp.143-156
    • /
    • 2014
  • This paper aims to give a quick view on denoising without comprehensive details. Denoising can be understood as removing unwanted parts in signals and images. Noise incorporates intrinsic random fluctuations in the data. Since noise is ubiquitous, denoising methods and models are diverse. Starting from what noise means, we briefly discuss a denoising model as maximum a posteriori estimation and relate it with a variational form or energy model. After that we present a few major branches in image and signal processing; filtering, shrinkage or thresholding, regularization and data adapted methods, although it may not be a general way of classifying denoising methods.

Multiscale features and information extraction of online strain for long-span bridges

  • Wu, Baijian;Li, Zhaoxia;Chan, Tommy H.T.;Wang, Ying
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.679-697
    • /
    • 2014
  • The strain data acquired from structural health monitoring (SHM) systems play an important role in the state monitoring and damage identification of bridges. Due to the environmental complexity of civil structures, a better understanding of the actual strain data will help filling the gap between theoretical/laboratorial results and practical application. In the study, the multi-scale features of strain response are first revealed after abundant investigations on the actual data from two typical long-span bridges. Results show that, strain types at the three typical temporal scales of $10^5$, $10^2$ and $10^0$ sec are caused by temperature change, trains and heavy trucks, and have their respective cut-off frequency in the order of $10^{-2}$, $10^{-1}$ and $10^0$ Hz. Multi-resolution analysis and wavelet shrinkage are applied for separating and extracting these strain types. During the above process, two methods for determining thresholds are introduced. The excellent ability of wavelet transform on simultaneously time-frequency analysis leads to an effective information extraction. After extraction, the strain data will be compressed at an attractive ratio. This research may contribute to a further understanding of actual strain data of long-span bridges; also, the proposed extracting methodology is applicable on actual SHM systems.