• Title/Summary/Keyword: wavefront error

Search Result 71, Processing Time 0.029 seconds

Gravity Compensation Techniques for Enhancing Optical Performance in Satellite Multi-band Optical Sensor (위성용 다중대역광학센서의 광학 성능 향상을 위한 자중보상기법)

  • Do-hee Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.127-139
    • /
    • 2024
  • This paper discusses a gravity compensation technique designed to reduce wavefront error caused by gravity during the assembly and alignment of satellite multi-band optical sensor. For this study, the wavefront error caused by gravity was analyzed for the opto-mechanical structure of multi-band optical sensor. Wavefront error, an indicator of optical performance, was computed by using the displacements of optics calculated through structural analysis and optical sensitivity calculated through optical analysis. Since the calculated wavefront error caused by gravity exceeded the allocated budget, the gravity compensation technique was required. This compensation technique reduces wavefront error effectively by applying the compensation load to the appropriate position of the housing tube. This method successfully meets the wavefront error budget for all bands. In the future, a gravity compensation equipment applying this technique will be manufactured and used for assembly and alignment of multi-band optical sensor.

Estimation of a source range using acoustic wavefront in bottom reflection environment (해저면 반사 환경에서 음파의 파면을 이용하는 음원의 거리 추정)

  • Joung-Soo Park;Jungyong Park;Su-Uk Son;Ho Seuk Bae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.324-334
    • /
    • 2024
  • The Wavefront Curvature Ranging (WCR) is an estimation method for a source range from the wavefront curvature of acoustic waves. The conventional method uses trigonometry to estimate the source range by assuming the sound speed as a constant. Because of this assumption, range error occurs in the ocean environment where the bottom reflection is clearly separated. In order to reduce the range error, Matched Wavefront Curvature Ranging (MWCR) was proposed applying the sound speed structure in the ocean environment and Maximum Likelihood Estimation (MLE). The range error was reduced in the results of the simulation on the proposed method. In the future, this method will be applicable to the sonar system if the reliability of ranging is confirmed by measured signal.

Wavefront Distortion caused by High Energy Laser Beam in the Relay Mirrors of the Laser Beam Director (고에너지 레이저빔에 의해 유발된 광집속장치 반사경 광파면 왜곡)

  • Choi, Jong-Ho;Kim, Yeon-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.144-149
    • /
    • 2008
  • Thermal distortion of the laser mirrors which are the Coude mirrors of the laser beam director and the wavefront error caused by the thermal distortion are studied. Coude mirrors consist of three relay mirrors and one fast steering mirror. The mirrors have reflectivity of 99.5% with respect to the laser wavelength of $3.8\;{\mu}m$, and absorption of 500 W per second. Thermal distortion and its related wavefront errors are studied with laser beam irradiation for 5 seconds. For the relay mirror, the wavefront error is 334 nm_PV, 98 nm rms and for fast steering mirror, $11.5\;{\mu}m$_PV, $3{\mu}m$ rms.

Reconstruction of Wavefront Aberration of 100-TW Ti:sapphire Laser Pulse Using Phase Retrieval Method

  • Jeong, Tae-Moon;Kim, Chul-Min;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.186-191
    • /
    • 2008
  • A phase retrieval method using an error reduction algorithm is developed for reconstructing a wavefront aberration of an 100-TW Ti:sapphire laser pulse from the measurement of a focal spot. The phase retrieval method can successfully reconstruct a wavefront aberration of a 100-TW Ti:sapphire laser pulse, and the reconstructed wavefront aberration shows a good agreement with the wavefront aberration measured with a wavefront sensor. The effect of the dynamic range and the intensity noise on the reconstruction is also investigated in reconstructing a wavefront aberration of an 100-TW Ti:sapphire laser pulse.

Required Performance Analysis of Wavefront Distortion System against Monopulse Radar (모노펄스 레이더에 대한 전파왜곡 시스템의 요구 성능 분석)

  • Jang, Yeonsoo;Kim, Ghiback;Park, Jintae;Lee, Changhoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.577-580
    • /
    • 2016
  • One of the effective jamming methods to disturb monopulse radars is a wavefront distortion. Most well-known wavefront distortion is the cross eye technique which uses two transmitters. The cross eye can make angle error regardless of monopulse radar structure but high accuracies of phase and amplitude between two transmitters should be needed to make large angle error. Thus, the accuracies of phase and amplitude are essentially required performance parameters for implementation of wavefront distortion systems and the required values of accuracy is dependant on amount of angle error. In this paper, we derive expressions for minimum required values of phase difference and amplitude ratio according to amount of angle error and analyze the results.

Wavefront Compensation Using a Silicon Carbide Deformable Mirror with 37 Actuators for Adaptive Optics (적응광학계용 37채널 SiC 변형거울을 이용한 파면 보상)

  • Ahn, Kyohoon;Rhee, Hyug-Gyo;Lee, Ho-Jae;Lee, Jun-Ho;Yang, Ho-Soon;Kihm, Hagyong
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.3
    • /
    • pp.106-113
    • /
    • 2016
  • In this paper, we deal with the wavefront compensation capability of a silicon carbide (SiC) deformable mirror (DM) with 37 actuators for adaptive optics. The wavefront compensation capability of the SiC DM is predicted by computer simulation and examined by actual experiments with a closed-loop adaptive optics system consistsing of a light source, a phase plate, a SiC DM, a high speed Shack-Hartmann sensor, and a control computer. Distortion of wavefront is caused by the phase plate in the closed-loop adaptive optics system. The distorted wavefront has a peak-to-valley (PV) wavefront error of $0.3{\mu}m{\sim}0.9{\mu}m$ and root-mean-square (RMS) error of $0.06{\mu}m{\sim}0.25{\mu}m$. The high-speed Shack-Hartmann sensor measures the wavefront error of the distortion caused by the phase plate, and the SiC DM compensates for the distorted wavefront. The compensated wavefront has residual errors lower than $0.1{\mu}m$ PV and $0.03{\mu}m$ RMS. Consequently, we conclude that we can compensate for the distorted wavefront using the SiC DM in the closed-loop adaptive optics system with an operating frequency speed of 500 Hz.

Wavefront Aberration Measurement with Shack-Hartmann Sensor and Point Source (Shack-Hartmann 파면분석기와 점광원을 이용한 광학부품의 수차 측정)

  • Lee, Jin-Seok;Kim, Hak-Young;Park, Yong-Pil;Park, No-Cheol;Hahn, Jae-Won
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.160-161
    • /
    • 2005
  • Using a Shack-Hartmann sensor, we construct an optical testing system measuring the wavefront error of small optical components. The systematic error of the sensor is compensated with a reference plane-wave system that produces almost perfect plane waves. Several types of lenses are tested using a point source that generates spherical waves emitted from a pinhole. The results of the optical testing obtained with the Shack- Hartman sensor are compared with those measured with Zygo interferometer.

  • PDF

WAVEFRONT SENSING TECHNOLOGY FOR ADAPTIVE OPTICAL SYSTEMS

  • Uhma Tae-Kyoung;Rohb Kyung-Wan;Kimb Ji-Yeon;Park Kang-Soo;Lee Jun-Ho;Youn Sung-Kie
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.628-632
    • /
    • 2005
  • Remote sensing through atmospheric turbulence had been hard works for a long time, because wavefront distortion due to the Earth's atmospheric turbulence deteriorates image quality. But due to the appearance of adaptive optics, it is no longer difficult things. Adaptive optics is the technology to correct random optical wavefront distortions in real time. For past three decades, research on adaptive optics has been performed actively. Currently, most of newly built telescopes have adaptive optical systems. Adaptive optical system is typically composed of three parts, wavefront sensing, wavefront correction and control. In this work, the wavefront sensing technology for adaptive optical system is treated. More specifically, shearing interferometers and Shack-Hartmann wavefront sensors are considered. Both of them are zonal wavefront sensors and measure the slope of a wavefront. . In this study, the shearing interferometer is made up of four right-angle prisms, whose relative sliding motions provide the lateral shearing and phase shifts necessary for wavefront measurement. Further, a special phase-measuring least-squares algorithm is adopted to compensate for the phase-shifting error caused by the variation in the thickness of the index-matching oil between the prisms. Shack-Hartmann wavefront sensors are widely used in adaptive optics for wavefront sensing. It uses an array of identical positive lenslets. And each lenslet acts as a subaperture and produces spot image. Distortion of an input wavefront changes the location of spot image. And the slope of a wavefront is obtained by measuring this relative deviation of spot image. Structures and measuring algorithms of each sensor will be presented. Also, the results of wavefront measurement will be given. Using these wavefront sensing technology, an adaptive optical system will be built in the future.

  • PDF

Error Analysis of the Passive Localization Using Near-field Effect in the Sea (해양에서 근거리효과를 이용한 수동 위치추정 오차분석)

  • 박정수;최진혁
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.75-81
    • /
    • 2001
  • In this paper we analyzed the localization error of near-field detection algorithm in the sea. The near-field detection algorithms using triangulation and wavefront curvature basically assume a signal in two dimension of bearing and range. But the assumption causes localization error because there is three dimension of bearing, range, and depth in the sea. Even through three dimensional effect is considered, the localization error is occurred if multipath propagation in the sea is ignored. To analyze the localization error in the sea, we simulate the near-field localization using acoustic propagation model and focused beamforming considering wavefront curvature. The simulation results indicate that localization error always occurs in the sea and the error varied with sound velocity profile, water depth, bottom slope, source range, etc.

  • PDF

The Tip-Tilt Correction System in AO System for Small Telescope

  • Yu, Hyungjun;Park, Yong-Sun;Lee, Bangweon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.219.2-219.2
    • /
    • 2012
  • We are developing Adaptive Optics (AO) system for 24 inch telescope at Seoul National University Observatory. It consists of the tip-tilt correction system and the residual wavefront error correction system with a deformable mirror and a wavefront sensor. We present the construction and performance measurements of the tip-tilt correction system. The tip-tilt component is the single largest contributor to wavefront error, especially for small telescope. The tip-tilt correction system consists of a quadrant photodiode, a tip-tilt mirror and a feed back loop. The collimated He-Ne laser beam is used for input light source and is artificially disturbed by air turbulence generated by a heat gun. Most of the turbulence is of low frequency less than 20 Hz, but extends to a few hundreds Hz. It is found that the closed loop system using proportional-integral-derivative (PID) control successfully corrects tip-tilt error at a rate as high as 300~400 Hz.

  • PDF