• Title/Summary/Keyword: wave-energy

Search Result 2,430, Processing Time 0.028 seconds

Surface Energy Balance at Sejong Station, King George Island, Antarctica (남극 세종기지의 에너지 평형)

  • Kim, Jhoon;Cho, Hi Ku;Jung, Yeon Jin;Lee, Yun Gon;Lee, Bang Yong
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.111-124
    • /
    • 2006
  • This study examines seasonal variability of the surface energy balance at the King Sejong Station, Antarctica, using measurements and estimates of the components related to the balance for the period of 1996 to 2004. Annual average of downward shortwave radiation at the surface is 81 $Wm^{-2}$ which is 37% of the extraterrestrial value, with the monthly maximum of 188 $Wm^{-2}$ in December and the minimum of 8 $Wm^{-2}$ in June. These values are relatively smaller than those at other stations in Antarctica, which can be attributed to higher cloudy weather conditions in Antarctic front zone. Surface albedo varies between ~0.3 in the austral summer season and ~0.6 in the winter season. As a result, the net shortwave radiation ranges from 117 $Wm^{-2}$ down to 3 $Wm^{-2}$ with annual averages of 43 $Wm^{-2}$. Annual average of the downward longwave radiation shows 278 $Wm^{-2}$, ranging from 263 $Wm^{-2}$ in August to 298 $Wm^{-2}$ in January. The downward longwave radiation is verified to be dependent strongly on the air temperature and specific humidity, accounting for 74% and 79% of the total variance in the longwave radiation, respectively. The net longwave radiation varies between 25 $Wm^{-2}$ and 40 $Wm^{-2}$ with the annual averages of 30 $Wm^{-2}$. Accordingly, the annual average energy balance is dominated by radiative warming of a positive net all-wave radiation from September to next March and radiative cooling of a negative net all-wave radiation from April to August. The net all-wave radiative energy gain and loss at the surface is mostly balanced by turbulent flux of sensible and latent heat. The soil heat flux is of negligible importance in the surface energy balance.

Kirchhoff Prestack Depth Migration for the Complex Structure Using One-Way Wave Equation (일방향 파동방정식을 이용한 복잡한 구조의 키리히호프 중합전 심도구조보정)

  • Ko, Seung-Won;Yang, Seung-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.18-22
    • /
    • 2002
  • As a single arrival traveltime, maximum energy arrival traveltime has been known as the most proper operator for Kirchhoff migration. In case of the model having the simple structure, both the first arrival traveltime and the maximum energy arrival traveltime can be used as the correct operators for Kirchhoff migration. However for some model having the complex and high velocity contrast structure, the migration using the first arrival traveltime can't give the correct depth section. That is, traveltime to be required in Kirchhoff migration is the maximum energy traveltime, but, needs considerably more calculation time than that of first arrival. In this paper, we propose the method for calculating the traveltime approximated to the maximum energy arrival using one-way wave equation. After defining the WAS(Wrap Around Suppression) factor to be used for calculating the first arrival traveltime using one-way wave equation as the function of lateral grid interval and depth and considering the delay time of source wavelet. we calculate the traveltime approximated to the maximum energy arrival. to verify the validity of this traveltime, we applied this to the migraion for simple structure and complex structure and compared the depth section with that obtained by using the first arrival traveltime.

Ultimate Strength Analysis of Connections of Floating Pendulum Wave Energy Converter (부유식 진자형 파력발전장치의 연결부 최종강도해석)

  • Sohn, Jung Min;Cheon, Ho Jeong;Shin, Seung Ho;Hong, Key Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • A floating offshore structure has high tendency to occur the buckling when compressive, bending and shear loads applied. When the buckling is occurred, in-plane stiffness of structure is remarkably decreased. And it has a harmful effect on the local structural strength as well as global structural strength. In the present study, it has been investigated the ultimate strength of tubular members which is located between a floater and a damping plate of the floating pendulum wave energy converter. Nonlinear finite element method is conducted using the initial imperfection according to 1st buckling mode which is obtained from the elastic buckling analysis. It is also noted the ultimate bending strength characteristic varying with a diameter, thickness and stiffeners of the tubular member.

A Preliminary Design of Mooring System for Floating Wave Energy Converter (부유식 파력발전장치용 계류시스템의 초기설계)

  • Jung, D.H.;Shin, S.H.;Kim, H.J.;Lee, H.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.3
    • /
    • pp.184-191
    • /
    • 2011
  • Preliminary design of a mooring system for a floating wave energy converter(WEC) is performed. A mooring line is designed to consist of two parts; the one is a chain in heavy weight laid on the seabed and linked to an anchor on the seabed and the other is a light weight chain suspended at a floater. A high weight chain laid on the seabed can contribute to mitigate dynamic energy propagated from top oscillation and decrease anchor weight and volume. Through a low weight chain suspended between a floater and seabed the WEC's function to produce energy from wave can be affected in minimum by the motion of a chain. The static and dynamic analyses for the designed mooring system were carried out to evaluate WEC system's safety. The present study shows that the designed gravity anchor moves horizontally due to the tension exerted on the anchor in the severe ocean environmental condition. The present mooring system should be redesigned to satisfy the safety requirements. The present study will be useful to predict the safety of the mooring system under ocean environment.

Field Experimental Study on a Soft Protecting Method for Coastal Erosion Prevention (유연재를 이용한 연안잠식방지에 대한 현장실험 연구)

  • Peng, Ta-Hsiung;Jan, Chyan-Deng
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.216-222
    • /
    • 2010
  • The structural methods used to protect coastal erosion are usually very expensive in construction as well as in spending on maintaining the structures from damage. Those structures like embankments, breakwaters, jetties etc. are commonly constructed with concretes (rigid methods) to protect coastal erosion. But those rigid methods are not effective always, because the wave energy and impact force on the structures could not be effectively reduced by those methods. For avoiding sediment erosion on coastal areas by the way of reducing wave energy, a flexible breakwater is introduced which will reduce energy and protect coastline economically and environmentally. The flexible device is a combination of flexible wire nets and stack of rings made of used vehicle tires and soft blades on surfaces. This flexible wire net is placed in between two stacks of rings. The stack of rings is mainly used to hold the flexible wire nets and the flexible wire net is mainly used to reduce wave energy and helps to deposit sediments in coastal area. For a field experiment study, the above-mentioned flexible breakwater of coastal protection has been set up at the Shuang-Chun coastal area in Tainan County since June 10, 2009. The length of the flexible device is 50.0 meters and the height is 2.0 meters. The function of the device has been examined by Typhoon Linfa during June 19~22, 2009 and by Typhoon Morakot during August 6~10, 2009. The result shows that the flexible breakwater has effectively trapped sediments and let them deposit on coastal. The depth of sediment deposition around the device was about 0.5 to 0.8 meters.

A Linear Wave Equation Over Mild-Sloped Bed from Double Integration (이중적분을 이용한 완경사면에서의 선형파 방정식)

  • Kim, Hyo-Seob;Jung, Byung-Soon;Lee, Ye-Won
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.165-172
    • /
    • 2009
  • A set of equations for description of transformation of harmonic waves is proposed here. Velocity potential function and separation of variables are introduced for the derivation. The continuity equation is in a vertical plane is integrated through the water so that a horizontal one-dimensional wave equation is produced. The new equation composed of the complex velocity potential function, further be modified into. A set up of equations composed of the wave amplitude and wave phase gradient. The horizontally one-dimensional equations on the wave amplitude and wave phase gradient are the first and second-order ordinary differential equations. They are solved in a one-way marching manner starting from a side where boundary values are supplied, i.e. the wave amplitude, the wave amplitude gradient, and the wave phase gradient. Simple spatially-centered finite difference schemes are adopted for the present set of equations. The equations set is applied to three test cases, Booij's inclined plane slope profile, Massel's smooth bed profile, and Bragg's wavy bed profile. The present equations set is satisfactorily verified against existing theories including Massel's modified mild-slope equation, Berkhoff's mild-slope equation, and the full linear equation.

  • PDF

Stability Evaluation of Rear-Parapet Caisson Breakwaters under Regular Waves by Numerical Simulation (수치해석을 통한 규칙파를 받는 후부 패러핏 케이슨 방파제의 안정성 평가)

  • Lee, Byeong Wook;Park, Woo-Sun;Ahn, Sukjin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.95-105
    • /
    • 2020
  • In this study, using the CADMAS-SURF model, the characteristics of the wave pressures and the wave forces were analyzed according to the installation position of the parapet on top of the caisson, and the stability evaluation was carried out using estimated wave forces for the design wave condition. Numerical results show that adopting the rear-parapet reduces the front maximum wave pressures and wave forces, and the maximum wave pressure acting on the rear-parapet increases slightly compared to the front parapet, but the wave force acting on the rear-parapet has little effect on the stability of the breakwater due to the phase difference with the wave force acting on the front of the breakwater. In addition, impulsive wave pressures did not occur, as Yamamoto et al. (2013) pointed out the problem of the rear-parapet breakwater. As a result of the stability against sliding and overturning, it was estimated that the target safety factor of 1.2 could be secured by the self-weight of 13% less than the case of the front parapet. At this time, the maximum ground pressure was also reduced by 30%, and the applicability of the rear-parapet structure to the actual site was evaluated as high.

Development of Compliant and Dissipative Joints in Coupled Thin Plates for Vibrational Energy Flow Analysis (평판 구조물의 진동 파워흐름해석을 위한 비보존 조인트 개발)

  • Song, Jee-Hun;Hong, Suk-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1082-1090
    • /
    • 2008
  • In this paper, a general solution for the vibrational energy and intensity distribution through a compliant and dissipative joint between plate structures is derived on the basis of energy flow analysis (EFA). The joints are modeled by four sets of springs and dashpots to show their compliancy and dissipation in all four degrees of freedom. First, for the EFA, the power transmission and reflection coefficients for the joint on coupled plate structures connected at arbitrary angles were derived by the wave transmission approach. In numerical applications, EFA is performed using the derived coefficients for coupled plate structures under various joint properties, excitation frequencies, coupling angles, and internal loss factors. Numerical results of the vibrational energy distribution showed that the developed compliant and dissipative joint model successfully predicted the joint characteristics of practical structures vibrating in the medium-to-high frequency ranges. Moreover, the intensity distribution of a compliant and dissipative joint is described.

A Low-Power Clustering Algorithm Based on Fixed Radio Wave Radius in WSN (WSN에서 전파범위 기반의 저 전력 클러스터링 알고리즘)

  • Rhee, Chung Sei
    • Convergence Security Journal
    • /
    • v.15 no.3_1
    • /
    • pp.75-82
    • /
    • 2015
  • Recently, lot of researches on multi-level protocol have been done to balance the sensor node energy consumption of WSN and to improve the node efficiency to extend the life of the entire network. Especially in multi-hop protocol, a variety of models have been studied to improve energy efficiency and apply it in real system. In multi-hop protocol, we assume that energy consumption can be adjusted based on the distance between the sensor nodes. However, according to the physical property of the actual WSN, it's hard to establish this. In this paper, we propose low-power sub-cluster protocol to improve the energy efficiency based on the spread of distance. Compared with the previous protocols, the proposed protocol is energy efficient and can be effectively used in the wireless sensing network.

Nondestructive Evaluation of the Turbine Blade of Wind Energy By Using T-Ray (T-ray를 이용한 풍력터빈 브레이드 비파괴결함평가)

  • Im, Kwang-Hee;Jeong, Jong-An;Hsu, David K.;Lee, Kil-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.102-108
    • /
    • 2012
  • A study of terahertz waves (T-ray) was made for the nondestructive evaluation of FRP (Fiber reinforced plastics) composite materials. The to-be-used systems were time domain spectroscopy (TDS) and continuous wave (CW). The composite materials investigated include both turbine blades of wind energy (non-conducting polymeric composites) and conducting carbon fiber composites. Terahertz signals in the TDS mode resembles that of ultrasound; however, unlike ultrasound, a terahertz pulse was not able to detect a material with conductivity. This was demonstrated in CFRP (Carbon fiber reinforced plastics) laminates. Refractive index (n) was defined as one of mechanical properties; so a method was solved in order solve the "n" in the material with the cut parts of the turbine blades of wind energy. The defects and anomalies investigated by terahertz radiation were foreign material inclusions and simulated disband. Especially, it is found that the T-ray went through the turbine blade with greater thickness (about 90mm).