• Title/Summary/Keyword: wave-energy

Search Result 2,430, Processing Time 0.023 seconds

Coriolis Coupling Influence on the H+LiH Reaction

  • Zhai, Hongsheng;Li, Wenliang;Liu, Yufang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.151-157
    • /
    • 2014
  • We have reported the reaction probability, integral reaction cross section, and rate constant for the title system calculated with the aid of a time-dependent wave packet approach. The ab initio potential energy surface (PES) of Prudente et al. (Chem. Phys. Lett. 2009, 474, 18) is employed for the purpose. The calculations are carried out over the collision energy range of 0.05-1.4 eV for the two reaction channels of H + LiH ${\rightarrow}$ Li + $H_2$ and $H_b$ + $LiH_a$ ${\rightarrow}$ $LiH_b$ + $H_a$. The Coriolis coupling (CC) effect are taken into account. The importance of including the Coriolis coupling quantum scattering calculations are revealed by the comparison between the Coriolis coupling and the centrifugal sudden (CS) approximation calculations.

High Energy Density for Drying of Coated Webs-Porous Burner Combustion a New Approach

  • Schneider, Heiko;Krieger, Reinhold
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.205-208
    • /
    • 2006
  • Existing gas fired burners work in the medium wave IR range at $1000^{\circ}C$ and an energy density of $200kW/m^{2}$. The patented porous burner technology reaches the short wave IR spectrum ($1450^{\circ}C$) and comes up to an energy density of $1000kW/m^{2}$. This technology is of great interest for various applications in paper industry. Speeding up existing coating lines can be realized without a major revamp of the line. Main characteristics of this new developed technology enable a better process control. In this paper the porous burner technology for paper industry is evaluated.

  • PDF

Hydrodynamic performance of a vertical slotted breakwater

  • George, Arun;Cho, Il Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.468-478
    • /
    • 2020
  • The wave interaction problem with a vertical slotted breakwater, consisting of impermeable upper, lower parts and a permeable middle part, has been studied theoretically. An analytical model was presented for the estimation of reflection and transmission of monochromatic waves by a slotted breakwater. The far-field solution of the wave scattering involving nonlinear porous boundary condition was obtained using eigenfunction expansion method. The empirical formula for drag coefficient in the near-field, representing energy dissipation across the slotted barrier, was determined by curve fitting of the numerical solutions of 2-D channel flow using CFD code StarCCM+. The theoretical model was validated with laboratory experiments for various configurations of a slotted barrier. It showed that the developed analytical model can correctly predict the energy dissipation caused by turbulent eddies due to sudden contraction and expansion of a slotted barrier. The present paper provides a synergetic approach of the analytical and numerical modelling with minimum CPU time, for better estimation of the hydrodynamic performance of slotted breakwater.

Ultrasonically enhancing flowability of cement grout for reinforcing rock joint in deep underground

  • Junho Moon;Inkook Yoon;Minjin Kim;Junsu Lee;Younguk Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.211-219
    • /
    • 2023
  • This study analyzes the changes in the physical properties of grout by irradiating it with ultrasonic energy and assesses the injectability of the grout into deep rock fractures. The materials used in the research are OPC (Ordinary Portland Cement) and MC (Micro Cement), and are irradiated depending on the water/cement ratio. After irradiating the grout with ultrasonic energy, viscosity, compressive strength, and particle size are analyzed, and the results of the particle size analysis were applied to Nick Barton's theory to evaluate the injectability of the grout into deep rock fractures under those conditions. It was found that the viscosity of the grout decreased after ultrasonic wave irradiation, and the rate of viscosity reduction tended to decrease as the water/cement ratio increased. Additionally, an increase in compressive strength and a decrease in particle size were observed, indicating that the grout irradiated with ultrasonic energy was more effective for injection into rock fractures.

A design of Hybrid power generation system for Ocean facilities (해양시설물용 하이브리드 발전시스템 설계)

  • Jung, Sung-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.381-385
    • /
    • 2009
  • Generally power system of ocean facility composes a solar generation system.The power to be generated by the solar system is changed according to the amount of sunlight of weather conditions. Output power of solar system is decreased with weather condition such as cloudy day and rainy day. And the power shortage of the ocean facility can occur due to the lack of solar energy. To solve this problem, this paper proposes the power control system for solar-wave hybrid system Wave generation system consists of wells turbine and permanent magnet synchronous generator(PMSG). This propose system set the specific area and measures the solar generation power and wave generation power. As a result of experiment, the solar power is a more static source than wave power, but the wave power provides energy during periods of no sunshine. The power characteristic of propose hybrid system have been obtained high reliability than a solar generation system.

An Experimental Study of Radiated So from Elastic Thin Plate in a Turbulent Boundary Layer (난류 유동장 내에 놓인 탄성을 갖는 박판의 방사소음에 대한 실험적 연구)

  • Lee, Seung-Bae;Gwon, O-Seop;Lee, Chang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1327-1336
    • /
    • 2001
  • The structural modes driven by the low wave-number components of smooth elastic wall pressure provide a relatively weak coupling between the flow and the wall motion. If the elastic thin plate has any resonant mode whose wave-number of resonance coincides with $\omega$/U$\sub$c/, the power will be transmitted to those modes of vibration by the flows. We examine the problem in which the elastic thin plate is subject to pressure fluctuations under turbulent boundary layer. Measurements are presented of the frequency spectra of the near- and far-field pressures and radiated sound contributed by the various wave modes of the thin elastic plate. Dispersion equation for wave motions of elastic plate is used to investigate the effect of bending waves of relatively low wave number on radiated sound. The low wave-number motion of elastic plate is observed to have much less influence on the low-frequency energy of wall pressure fluctuations than that of the rediated sound. High amplitude events of the wall pressure are observed to weakly couple with high-frequency energy of radiated sound for case of low tension applied to the plate. The sound source localization is applied to the measurement of radiated sound by using acoustic mirror system.

Wave-Energy Extraction by a Compact Circular Array of Buoys (원형으로 배열된 다수 부이에 의한 파랑에너지 추출)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • The wave power, extracted from a circular array of small power buoys, is investigated under the potential theory. It is assumed that the buoy's radius, the draft, and the separation distance are much smaller than the water depth, the wave length, and the radius of a circular deployment area. The boundary value problem involving the macro-scale boundary condition on the mean surface covered by buoys is solved using the eigenfunction expansion method. The capture width, which is defined as the ratio of the extracted power to the wave power per unit length of the incident wave crest, is assessed for various combinations of packing ratio, radius of a circular array, and PTO damping coefficient. It is found that the circular array deployment is more effective in the viewpoint of efficiency than the single large buoy of the same total displaced volume.

Effects of demi-hull separation ratios on motion responses of tidal current turbines-loaded catamaran

  • Junianto, Sony;Mukhtasor, Mukhtasor;Prastianto, Rudi Walujo;Jo, Chul Hee
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.87-110
    • /
    • 2020
  • Catamaran has recently been a choice to support a typical vertical axis turbine in floating tidal current energy conversion system. However, motion responses associated with the catamaran can reduce the turbines efficiency. The possibility to overcome this problem isto change the catamaran parameter by varying and simulating the demi-hull separations to have lower motion responses. This simulation was undertaken by Computational Fluid Dynamic (CFD) using potential flow analysis. Cases of demi-hull separation were considered, with ratios of demi-hull separation (S) to the breadth of demi-hull (B), S/B of 3.45, 4.95, 6.45, 7.2 and 7.95. In order to compare to the previous works in the literature, the regular wave was set with wave height of 0.8 m. Furthermore, the analysis was carried out by irregular waves with significant wave height, Hs, of about 0.09 to 1.5 m and the wave period, T, of about 1.5 to 6 s or corresponding to the wave frequency, ω, of about 1.1 to 4.2 rad/s. The wave spectrum was derived from the equation of the International Towing Tank Conference (ITTC). For the case of turbines-loaded catamaran under consideration, the new finding is that the least significant amplitude response can be satisfied at the ratio S/B of 7.2. This study indicates that selecting a right choice of demi-hull separation ratio could contribute in reducing motion responses of the tidal current turbines-loaded catamaran.

Numerical Study on Temporal Evolution of Wind-Wave Spectra (풍파 스펙트럼의 시간발전에 관한 수치 실험)

  • 오병철;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.20-33
    • /
    • 1999
  • The evolution of deep-sea waves is driven by energy input from wind, nonlinear energy transfer between wave components, and dissipation through whitecaps. A comparative study was implemented by the use of two wave models in which only the computation methods of nonlinear wave-wave interactions are different from each other. It was reaffirmed that the nonlinear interaction plays a central role in such phenomena that occurred during the spectral growth of wind-seas as down-shift of the spectral peak frequency, overshoot, undershoot, and formation of self-similar spectrum. Specifically, the directional distribution at high frequencies develops into bimodal form, which is attributed to the nonlinear interactions. As saturation stage is reached, spectral density at high frequencies becomes proportional to negative 4 power to the frequency. Perturbations introduced into the spectrum quickly vanished through the actions of the self-similar mechanism. Thus, the nonlinear transfer has important contribution to the stability of numerical ocean wave models.

  • PDF

3D Numerical Simulation of Water Surface Variations and Velocity Fields around Permeable Submerged Breakwaters under Irregular Waves (불규칙파 조건 하에서 투과성잠제 주변의 수면변동 및 유속장에 관한 3차원 수치모의)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.4
    • /
    • pp.153-165
    • /
    • 2018
  • In this study, the performance of irregular wave field generation of olaFlow is first verified by comparing the frequency spectrum of the generated waves by the wave-source using olaFlow and the target wave. Based on the wave performance of irregular waves of olaFlow, the characteristics of the velocity field including the average flow velocity, longshore current and turbulent kinetic energy around the three-dimensional permeable submerged breakwaters, which act as the main external forces of the salient formation, are numerically investigated. The numerical results show that as the gap width between breakwaters decreases, the wave height in the center of the gap increases and as the gap width between breakwaters increases, the longshore currents become stronger. As a result, it is possible to understand the formation of the salient formed behind the submerged breakwaters.