• Title/Summary/Keyword: wave-energy

Search Result 2,426, Processing Time 0.032 seconds

LES of wind environments in urban residential areas based on an inflow turbulence generating approach

  • Shen, Lian;Han, Yan;Cai, C.S.;Dong, Guochao;Zhang, Jianren;Hu, Peng
    • Wind and Structures
    • /
    • v.24 no.1
    • /
    • pp.1-24
    • /
    • 2017
  • Wind environment in urban residential areas is an important index to consider when evaluating the living environment. However, due to the complexity of the flow field in residential areas, it is difficult to specify the correct inflow boundary conditions in the large eddy simulation (LES). In this paper, the weighted amplitude wave superposition (WAWS) is adopted to simulate the fluctuating velocity data, which satisfies the desired target wind field. The fluctuating velocity data are given to the inlet boundary of the LES by developing an UDF script, which is implemented into the FLUENT. Then, two numerical models - the empty numerical wind tunnel model and the numerical wind tunnel model with spires and roughness elements are established based on the wind tunnel experiment to verify the present method. Finally, the turbulence generation approach presented in this paper is used to carry out a numerical simulation on the wind environment in an urban residential area in Lisbon. The computational results are compared with the wind tunnel experimental data, showing that the numerical results in the LES have a good agreement with the experimental results, and the simulated flow field with the inlet fluctuations can generate a reasonable turbulent wind field. It also shows that strong wind velocities and turbulent kinetic energy occur at the passageways, which may affect the comfort of people in the residential neighborhood, and the small wind velocities and vortexes appear at the leeward corners of buildings, which may affect the spreading of the pollutants.

MBE Growth and Electrical and Magnetic Properties of CoxFe3-xO4 Thin Films on MgO Substrate

  • Nguyen, Van Quang;Meny, Christian;Tuan, Duong Ahn;Shin, Yooleemi;Cho, Sunglae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.370.1-370.1
    • /
    • 2014
  • Giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and magnetic random-access memory (MRAM) are currently active areas of research. Magnetite, Fe3O4, is predicted to possess as half-metallic nature, ~100% spin polarization (P), and has a high Curie temperature (TC~850 K). On the other hand, Spinel ferrite CoFe2O4 has been widely studies for various applications such as magnetorestrictive sensors, microwave devices, biomolecular drug delivery, and electronic devices, due to its large magnetocrystalline anisotropy, chemical stability, and unique nonlinear spin-wave properties. Here we have investigated the magneto-transport properties of epitaxial CoxFe3-xO4 thin films. The epitaxial CoxFe3-xO4 (x=0; 0.4; 0.6; 1) thin films were successfully grown on MgO (100) substrate by molecular beam epitaxy (MBE). The quality of the films during growth was monitored by reflection high electron energy diffraction (RHEED). From temperature dependent resistivity measurement, we observed that the Werwey transition (1st order metal-insulator transition) temperature increased with increasing x and the resistivity of film also increased with the increasing x up to $1.6{\Omega}-cm$ for x=1. The magnetoresistance (MR) was measured with magnetic field applied perpendicular to film. A negative transverse MR was disappeared with x=0.6 and 1. Anomalous Hall data will be discussed.

  • PDF

Ocean Response to the Pinatubo and 1259 Volcanic Eruptions

  • Kim, Seong-Joong;Kim, Baek-Min
    • Ocean and Polar Research
    • /
    • v.34 no.3
    • /
    • pp.305-323
    • /
    • 2012
  • The ocean's response to the Pinatubo and 1259 volcanic eruptions was investigated using an ocean general circulation model equipped with an energy balance model. Volcanic eruptions release gases into the atmosphere which increases the aerosol optical depth and acts to reduce the incoming short-wave radiation. For example, there was a huge volcanic eruption (Pinatubo) in 1991 which reduced the global mean radiative forcing by about 3 W $m^{-2}$. Two numerical experiments were simulated. The first experiment features the Pinatubo eruption and the second experiment simulates the much larger volcanic eruption that occurred in 1259 when the radiative forcing was reduced by 7 times compared to the Pinatubo event. With the reduced radiative forcing due to the Pinatubo eruption at about 3 W $m^{-2}$ and 1259 eruption at about 21 W $m^{-2}$, the global mean sea surface temperature (SST) decreased to its lowest in the second year after each event by about $0.4^{\circ}C$ and $1.6^{\circ}C$, respectively. Sea surface salinity (SSS) increased substantially in the northern North Pacific, northern North Atlantic, and the Southern Ocean. The reduced SST together with SSS increased ocean convection, which yielded an increase in North Atlantic Deep Water, Antarctic Bottom Water, and North Pacific Intermediate Water production and their outflows. The increase in overturning circulation eventually increased the pole-ward ocean heat fluxes. In conclusion, huge volcanic eruptions perturb the ocean substantially and their hallmarks last for more than a decade, confirming the importance of volcanic eruptions in illustrating the decadal-climate variability recorded in the paleoclimate proxy data for the past million years.

Unsteady Flow with Cavitation in Viscoelastic Pipes

  • Soares, Alexandre K.;Covas, Didia I.C.;Ramos, Helena M.;Reis, Luisa Fernanda R.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.269-277
    • /
    • 2009
  • The current paper focuses on the analysis of transient cavitating flow in pressurised polyethylene pipes, which are characterized by viscoelastic rheological behaviour. A hydraulic transient solver that describes fluid transients in plastic pipes has been developed. This solver incorporates the description of dynamic effects related to the energy dissipation (unsteady friction), the rheological mechanical behaviour of the viscoelastic pipe and the cavitating pipe flow. The Discrete Vapour Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM) have been used to describe transient cavitating flow. Such models assume that discrete air cavities are formed in fixed sections of the pipeline and consider a constant wave speed in pipe reaches between these cavities. The cavity dimension (and pressure) is allowed to grow and collapse according to the mass conservation principle. An extensive experimental programme has been carried out in an experimental set-up composed of high-density polyethylene (HDPE) pipes, assembled at Instituto Superior T$\acute{e}$cnico of Lisbon, Portugal. The experimental facility is composed of a single pipeline with a total length of 203 m and inner diameter of 44 mm. The creep function of HDPE pipes was determined by using an inverse model based on transient pressure data collected during experimental runs without cavitating flow. Transient tests were carried out by the fast closure of the ball valves located at downstream end of the pipeline for the non-cavitating flow and at upstream for the cavitating flow. Once the rheological behaviour of HDPE pipes were known, computational simulations have been run in order to describe the hydraulic behaviour of the system for the cavitating pipe flow. The calibrated transient solver is capable of accurately describing the attenuation, dispersion and shape of observed transient pressures. The effects related to the viscoelasticity of HDPE pipes and to the occurrence of vapour pressures during the transient event are discussed.

Three-Dimensional Laboratory Experiments for Tsunami Inundation in a Coastal City (지진해일 범람이 해안도시에 미치는 영향에 대한 3차원 수리모형실험)

  • Kim, Kyuhan;Park, Hyoungsu;Shin, Sungwon;Cox, Daniel T.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.400-403
    • /
    • 2012
  • Laboratory experiments were conducted for tsunami inundation to an urban area with large building roughness. The waterfront portion of the city of Seaside which is located on the US Pacific Northwest coast, was replicated in 1/50 scale in the wave basin. Tsunami heights and velocities on the inundated land were measured at approximately 31 locations for one incident tsunami heights with an inundation height of approximately 10 m (prototype) near the shoreline. The inundation pattern and speed were more severe and faster in some areas due to the arrangement of the large buildings. Momentum fluxes along the roads were estimated using measure tsunami inundation heights and horizontal fluid velocities. As expected, the maximum momentum flux was near the shoreline and decreased landward. Inundation heights and momentum flux were slowly decreased through the road with buildings on each side. The results from this study showed that the horizontal inundation velocity is an important factor for the external force of coastal structures.

Simulation of Resonance Shift and Quality Factor for Opto-fluidic Ring Resonator (OFRR) Biosensors (광-유체링공진기(OFRR) 바이오센서에 관한 공진이동과 양호도의 시뮬레이션)

  • Cho, Han-Keun;Han, Jin-Woo;Yang, Gil-Mo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • In this work, the finite element method was used to investigate the shifts of resonance frequencies and quality factor of whispering-gallery-mode (WGM) for an opto-fluidic ring resonator (OFRR) biosensor. To describe the near-field radiation transfer, the time-domain Maxwell's equations were employed and solved by using the in-plane TE wave application mode of the COMSOL Multiphysics with RF module. The OFRR biosensor model under current study includes a glass capillary with a diameter of 100 mm and wall thickness of 3.0 mm. The resonance energy spectrum curves in the wavelength range from 1545 nm to 1560 nm were examined under different biosensing conditions. We mainly studied the sensitivity of resonance shifts affected by changes in the effective thickness of the sensor resonator ring with a 3.0 mm thick wall, as well as changes in the refractive index (RI) of the medium inside ring resonators with both 2.5 mm and 3.0 mm thick walls. In the bulk RI detection, a sensitivity of 23.1 nm/refractive index units (RIU) is achieved for a 2.5 mm thick ring. In small molecule detection, a sensitivity of 26.4 pm/nm is achieved with a maximum Q-factor of $6.3{\times}10^3$. These results compare favorably with those obtained by other researchers.

Mechanism Diagnosis and Avoidance Design on Transient Acoustic Vibration of Reheater Water Supply Piping in Supercritical Boiler (초임계 보일러 재열기 급수 공급배관의 과도 음향진동 진단 및 회피설계)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Kim, Jae-Won;Lee, Doo-Young;Heo, Hae-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.385-393
    • /
    • 2013
  • In this paper, the mechanism identification and the avoidance measures on the phenomena of transient acoustic vibration amplified at the water-supply piping system to regulate the steam temperature of the boiler reheater in 500MW class supercritical power plant are presented. The pressure pulsation waves induced by the impeller passing of two feed-water pumps with five blades are coincident with the local acoustic modes of boiler reheater water-supply piping system. There are the phenomena amplified at the peaks of 5X, 10X, 15X and 20X in spectrums of piping vibration, sound pressure, and the feed-water's pressure pulsation waves. The shut-off device is installed in the piping system for the interception of pressure pulsation waves transmitted from two feed-water pumps and the modified design change of the piping layout is applied for the acoustic resonance avoidance. The acoustic natural frequencies are separated from the harmonics of pressure pulsation waves induced by the pump impellers passing through the design change of the span length. The acoustic vibration is gone by resonance avoidance measures. As a result, more than 20 dBA reduction is achieved from 100 dBA to 80 dBA.

Spatial Manipulation of Sound Using Multiple Sources (다수의 음원을 사용한 공간의 소리 제어 방법론)

  • Choi, Joung-Woo;Kim, Yang-Hann;Park, Young-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1378-1388
    • /
    • 2005
  • Spatial control of sound is essential to deliver better sound to the listener's position in space. As it can be experienced in many listening environments. the quality of sound can not be manifested over every Position in a hall. This motivates us to control sound in a region we select. The primary focus of the developed method has to do with the brightness and contrast of acoustic image in space. In particular, the acoustic brightness control seeks a way to increase loudness of sound over a chosen area, and the contrast control aims to enhance loudness difference between two neighboring regions. This enables us to make two different kinds of zone - the zone of quiet and the zone of loud sound - at the same time. The other perspective of this study is on the direction of sound. It is shown that we can control the direction of perceived sound source by focusing acoustic energy in wavenumber domain. To begin with, the proposed approaches are formulated for pure-tone case. Then the control methods are extended to a more general case, where the excitation signal has broadband spectrum. In order to control the broadband signal in time domain, an inverse filter design problem is defined and solved in frequency domain. Numerical and experimental results obtained in various conditions certainly validate that the acoustic brightness, acoustic contrast, direction of wave front can be manipulated for some finite region in space and time.

Assessment of Fatigue Damage of Adhesively Bonded Composite -Metal Joints by Acousto-Ultrasonics and Acoustic Emission (음향초음파와 음향방출에 의한 복합재료-금속 접착접합부의 피로손상 평가)

  • Kwon, Oh-Yang;Lee, Kyung-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.425-433
    • /
    • 2001
  • A correlation between fatigue damage and acousto-ultrasonic (AU) parameters has been obtained from signals acquired during fatigue loading of the single-lap joints of a carbon-fiber reinforced plastic (CFRP) laminates and A16061 plate. The correlation showed an analogy to those representing the stiffness reduction $(E/E_0)$ of polymer matrix composites by the accumulation of fatigue damage. This has been attributed to the transmission characteristics of acoustic wave energy through bonded joints with delamination-type defects and their influence on the change of spectral content of AU signals. Another correlation between fatigue cycles and the spectral magnitude of acoustic emission (AE) signals has also been found during the final stage of fatigue loading. Both AU and AE can be applied almost in real-time to monitor the evolution of damage during fatigue loading.

  • PDF

Synthesis of ZnO nanoparticles and their photocatalytic activity under UV light

  • Nam, Sang-Hun;Kim, Myeong-Hwa;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.423-423
    • /
    • 2011
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation (REDOX) reaction will occur on the ZnO surface and generate O2- and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into CO2 and H2O. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with TiO2. Zn(OH)2 was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF