• Title/Summary/Keyword: wave-by-wave method

Search Result 4,940, Processing Time 0.04 seconds

Wave Deformation and Blocking Performance by a Porous Dual Semi-Cylindrical Structure (투과성 이중 반원통 구조물에 의한 파 차단성능)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.10-17
    • /
    • 2010
  • The interaction of oblique incident waves with a porous dual semi-cylindrical structure is investigated under the assumption of linear potential theory. The porous dual semi-cylindrical structure consists of two concentric bottom-mounted cylindrical structures that are porous in front half and transparent in back half. By changing porosity, gap, and wave characteristics(wave frequencies, incidence angle), the wave blocking performance as well as the wave loads and the wave run-up are obtained. As a convenient measure of overall wave blocking performance, the root mean square(R.M.S.) of the wave elevation in a sheltered region is used. It is found that the porous semi-cylindrical structure may significantly reduce the wave response in a sheltered region and the wave forces decrease largely compared to the impermeable structure. The dual structure is more effective in reducing the wave response in a sheltered region than the mono type in the region of high frequencies.

Personalized Specific Premature Contraction Arrhythmia Classification Method Based on QRS Features in Smart Healthcare Environments

  • Cho, Ik-Sung
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.212-217
    • /
    • 2021
  • Premature contraction arrhythmia is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Most of arrhythmia clasification methods have been developed with the primary objective of the high detection performance without taking into account the computational complexity. Also, personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. Therefore it is necessary to design efficient method that classifies arrhythmia by analyzing the persons's physical condition and decreases computational cost by accurately detecting minimal feature point based on only QRS features. We propose method for personalized specific classification of premature contraction arrhythmia based on QRS features in smart healthcare environments. For this purpose, we detected R wave through the preprocessing method and SOM and selected abnormal signal sets.. Also, we developed algorithm to classify premature contraction arrhythmia using QRS pattern, RR interval, threshold for amplitude of R wave. The performance of R wave detection, Premature ventricular contraction classification is evaluated by using of MIT-BIH arrhythmia database that included over 30 PVC(Premature Ventricular Contraction) and PAC(Premature Atrial Contraction). The achieved scores indicate the average of 98.24% in R wave detection and the rate of 97.31% in Premature ventricular contraction classification.

Simulating three dimensional wave run-up over breakwaters covered by antifer units

  • Najafi-Jilani, A.;Niri, M. Zakiri;Naderi, Nader
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.297-306
    • /
    • 2014
  • The paper presents the numerical analysis of wave run-up over rubble-mound breakwaters covered by antifer units using a technique integrating Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) software. Direct application of Navier-Stokes equations within armour blocks, is used to provide a more reliable approach to simulate wave run-up over breakwaters. A well-tested Reynolds-averaged Navier-Stokes (RANS) Volume of Fluid (VOF) code (Flow-3D) was adopted for CFD computations. The computed results were compared with experimental data to check the validity of the model. Numerical results showed that the direct three dimensional (3D) simulation method can deliver accurate results for wave run-up over rubble mound breakwaters. The results showed that the placement pattern of antifer units had a great impact on values of wave run-up so that by changing the placement pattern from regular to double pyramid can reduce the wave run-up by approximately 30%. Analysis was done to investigate the influences of surface roughness, energy dissipation in the pores of the armour layer and reduced wave run-up due to inflow into the armour and stone layer.

Characteristics of Wave by Additional Installation of Porous Dual Circular Caissons on the Existing Breakwater (기존 방파제에 투과성 이중 원형케이슨 추가설치에 따른 파랑 특성 분석)

  • Park, Min Su
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.396-410
    • /
    • 2020
  • The design and the construction are carried out by installation of new caissons on the back or the front of existing caissons to increase the stability of existing caisson breakwater. In this study, we use the eigenfunction expansion method to analyze the effects of wave structure interaction when new porous dual circular caissons are installed on the back or the front of existing breakwater. The porous dual circular caisson which consisting of a porous outer cylinder circumscribing an impermeable inner cylinder is one type of seawater exchanging breakwater. The comparison of numerical results between present method and Sankarbabu et al. is made, and the wave force and the wave run-up acting on each porous dual circular caisson are calculated for various parameters by considering the wave structure interaction.

Nonlinear Uplift Wave Pressure Distribution Acting on the Caisson of Composite Breakwater (혼성방파제의 케이슨에 작용하는 비선형양압력분포에 관한 연구)

  • 김도삼;배기성
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.20-27
    • /
    • 2001
  • Recently numerical approaches for wave loads acting on the vertical caisson of breakwater, and resulting wave reflection and transmission coefficients have been performed. Although the numerical studies by Sulisz's(1997) and Kim et al.(2000) are suggested representatively, theoretical formulation for nonlinear wave pressure is not developed yet. And experimental results of Sulisz(1997) revealed that nonlinear uplift pressure on the caisson may be produced largely on the case of caisson founded on the high rubble mound. From the results of this study, the nonlinear theory for the uplift wave pressure acting on the caisson by applying boundary integral method of Green theorem is formulated, and also the characteristics of nonlinear uplift pressure and run-up height on the caisson are evaluated numerically, according to the variations of hydraulic properties of the rubble mound.

  • PDF

On the artificially-upstream flux splitting method

  • Sun M.;Takayama K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.156-157
    • /
    • 2003
  • A simple method is proposed to split the flux vector of the Euler equations by introducing two artificial wave speeds. The direction of wave propagation can be adjusted by these two wave speeds. This idea greatly simplifies the upwinding, and leads to a new family of upwind schemes. Numerical flux function for multi-dimensional Euler equations is formulated for any grid system, structured or unstructured. A remarkable simplicity of the scheme is that it successfully achieves one-sided approximation for all waves without recourse to any matrix operation. Moreover, its accuracy is comparable with the exact Riemann solver. For 1-D Euler equations, the scheme actually surpasses the exact solver in avoiding expansion shocks without any additional entropy fix. The scheme can exactly resolve stationary contact discontinuities, and it is also freed of the carbuncle problem in multi­dimensional computations.

  • PDF

Elastic wave propagation analysis in sandwich nanoplate assuming size effects

  • Amir Behshad;Maryam Shokravi;Akbar Shafiei Alavijeh;Hamed, Karami
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.71-77
    • /
    • 2023
  • This paper presents a study on the wave propagation of functionally graded material (FGM) sandwich nanoplates with soft core resting on a Winkler foundation. The structure is modelled by classical theory. Motion equations are derived by the assumption of nonlocal Eringen theory and energy method. Then, the equations are solved using an exact method for finding phase velocity responses. The effects of Winkler foundation, nonlocal parameters, thickness and mode number on the dispersion of elastic waves are shown. With the increase of spring constant, the speed of wave propagation increases and reaches a uniform state at a higher wave number.

Comparison of ensemble pruning methods using Lasso-bagging and WAVE-bagging (분류 앙상블 모형에서 Lasso-bagging과 WAVE-bagging 가지치기 방법의 성능비교)

  • Kwak, Seungwoo;Kim, Hyunjoong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1371-1383
    • /
    • 2014
  • Classification ensemble technique is a method to combine diverse classifiers to enhance the accuracy of the classification. It is known that an ensemble method is successful when the classifiers that participate in the ensemble are accurate and diverse. However, it is common that an ensemble includes less accurate and similar classifiers as well as accurate and diverse ones. Ensemble pruning method is developed to construct an ensemble of classifiers by choosing accurate and diverse classifiers only. In this article, we proposed an ensemble pruning method called WAVE-bagging. We also compared the results of WAVE-bagging with that of the existing pruning method called Lasso-bagging. We showed that WAVE-bagging method performed better than Lasso-bagging by the extensive empirical comparison using 26 real dataset.

Analysis on Current Characteristics According to Injection Method and Driving Waveform in Electrophoretic-Type E-Paper Display (전기영동형 전자종이 디스플레이에서 전자잉크의 주입 방법 및 구동파형에 따른 전류 특성 분석)

  • Lee, Joo-Won;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.386-392
    • /
    • 2020
  • In this study, the drift current characteristics of charged particles are analyzed for panels fabricated by varying the waveform biasing of the active particle loading method (APLM), which is a method driven by the electrophoretic principle of loading charged particles into a cell of a barrier rib-type electronic paper. We prepare 3 panels using APLM and 1 panel without APLM. The waveform of APLM uses square wave and ramp wave, and the step voltage wave is applied to the driving voltage. The drift currents measured from the square wave and ramp wave with the same period applied by APLM are 4.872 µC and 5.464 µC, respectively, and the ramp wave is shown to be relatively advantageous for loading charged particles that have a large q/m. The time-current curve results confirm that the abrupt movement of charged particles is occurring. When the step form wave signal with a short time of 1s is first applied, initial large movement of the charged particles is confirmed to occur in all samples, which is understood as the effect of applying the voltage necessary to remove the imaging force. The results of this study are expected to improve the loading of charged particles into the electronic paper cell, driven by the electrophoretic principle and optimization of the driving conditions.

Characteristics of Spread Parameter of the Extreme Wave Height Distribution around Korean Marginal Seas (한국 연안 극치 파고 분포의 확산모수 특성)

  • Jeong, Shin-Taek;Kim, Jeong-Dae;Ko, Dong-Hui;Kim, Tae-Heon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.480-494
    • /
    • 2009
  • Long term extreme wave data are essential for planning and designing coastal structures. Since the availability of the field data for the waters around Korean peninsula is limited to provide a reliable wave statistics, the wave climate information has been generated by means of long-term wave hindcasting using available meteorological data. KORDI(2005) has proposed extreme wave data at 106 stations off the Korean coast from 1979 to 2003. In this paper, extreme data sets of wave(KORDI, 2005) have been analyzed for best-fitting distribution functions, for which the spread parameter proposed by Goda(2004) is evaluated. The calculated values of the spread parameter are in good agreement with the values based on method of moment for parameter estimation. However, the spread parameter of extreme wave data has a representative value ranging from about 1.0 to 2.8 which is larger than some foreign coastal waters, it is necessary to review deep water design wave.