DOI QR코드

DOI QR Code

Elastic wave propagation analysis in sandwich nanoplate assuming size effects

  • Amir Behshad (Faculty of Technology and Mining, Yasouj University) ;
  • Maryam Shokravi (Department of Education, Mehrab High School) ;
  • Akbar Shafiei Alavijeh (Department of Civil Engineering, Jasb Branch, Islamic Azad University) ;
  • Hamed, Karami (Department of Civil Engineering, Jasb Branch, Islamic Azad University)
  • Received : 2021.01.03
  • Accepted : 2023.03.23
  • Published : 2023.04.10

Abstract

This paper presents a study on the wave propagation of functionally graded material (FGM) sandwich nanoplates with soft core resting on a Winkler foundation. The structure is modelled by classical theory. Motion equations are derived by the assumption of nonlocal Eringen theory and energy method. Then, the equations are solved using an exact method for finding phase velocity responses. The effects of Winkler foundation, nonlocal parameters, thickness and mode number on the dispersion of elastic waves are shown. With the increase of spring constant, the speed of wave propagation increases and reaches a uniform state at a higher wave number.

Keywords

References

  1. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
  2. Askes, H. and Aifantis, E.C. (2011), "Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results", Int. J. Solids Struct., 48(13), 1962-1990. https://doi.org/10.1016/j.ijsolstr.2011.03.006.
  3. Amoli, A., Kolahchi, R. and Bidgoli, M.R. (2018), "Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory", Earthq. Struct., 15(3), 285-294. https://doi.org/10.12989/eas.2018.15.3.285.
  4. Arbabi, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis", Wind Struct., 24(5), 431-446. https://doi.org/10.12989/was.2017.24.5.431.
  5. Azmi, M., Kolahchi, R. and Bidgoli, M.R. (2019), "Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load", Adv. Concr. Constr., 7(1), 51-63. https://doi.org/10.12989/acc.2019.7.1.051.
  6. Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.
  7. Farrokhian, A. (2020a), "Buckling response of smart plates reinforced by nanoparticles utilizing analytical method", Steel Compos. Struct., 35, 1-12, https://doi.org/10.12989/scs.2020.35.1.001.
  8. Farrokhian, A. (2020b), "The effect of voltage and nanoparticles on the vibration of sandwich nanocomposite smart plates", Steel Compos. Struct., 34, 733-742. https://doi.org/10.12989/scs.2020.34.5.733.
  9. Farrokhian, A. and Salmani-Tehrani, M. (2020), "Surface and small scale effects on the dynamic buckling of carbon nanotubes with smart layers assuming structural damping", Steel Compos. Struct., 37, 229-251, https://doi.org/10.12989/scs.2020.37.2.229.
  10. Faramoushjan, S.G., Jalalifar, H. and Kolahchi, R. (2021), "Mathematical modelling and numerical study for buckling study in concrete beams containing carbon nanotubes", Adv. Concr. Constr., 11(6), 521-529. https://doi.org/10.12989/acc.2021.11.6.521.
  11. Farokhian, A. and Kolahchi, R. (2020), "Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs", Struct. Eng. Mech., 73(5), 555-563. https://doi.org/10.12989/sem.2020.73.5.555.
  12. Fakhar, A. and Kolahchi, R. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci., 144, 788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036.
  13. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concr., 21, 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  14. Hajmohammad, M.H., Sharif Zarei, M., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally gradedcarbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636217720373.
  15. Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2018a), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213 . https://doi.org/10.1016/j.ijmecsci.2018.01.026 .
  16. Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018b), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., 6(4), 299-321. https://doi.org/10.12989/anr.2018.6.4.299.
  17. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018c), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dynam. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002.
  18. Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2019a), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal", Eng. Comput., 35(4), 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.
  19. Hajmohammad, M.H., Zarei, M.S., Kolahchi, R. and Karami, H. (2019b), "Visco-piezoelasticity-zigzag theories for blast response of porous beams covered by graphene plateletreinforced piezoelectric layers", J. Sandw. Struct. Mat., https://doi.org/10.1177/1099636219839175.
  20. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2021), "Dynamic analysis in beam element of wave-piercing Catamarans undergoing slamming load based on mathematical modelling", Ocean Eng., 234, 109269. https://doi.org/10.1016/j.oceaneng.2021.109269.
  21. Heidarzadeh, A., Kolahchi, R. and Bidgoli, M.R. (2018), "Concrete pipes reinforced with AL2O3 nanoparticles considering agglomeration: magneto-thermo-mechanical stress analysis", Int. J. Civ. Eng., 16(3), 315-322. https://doi.org/10.1007/s40999-016-0130-2.
  22. Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded laminated porous concrete beams armed with carbon nanotubes", Comput. Concr., 17, 567-578. https://doi.org/10.12989/cac.2016.17.5.567
  23. Jassas, M.R., Bidgoli, M.R. and Kolahchi, R. (2019), "Forced vibration analysis of concrete plates reinforced by agglomerated SiO2 nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263.
  24. Jamali, M., Shojaee, T., Kolahchi, R. and Mohammadi, B. (2016), "Buckling analysis of nanocomposite cut out plate using domain decomposition method and orthogonal polynomials", Steel Compos. Struct., 22(3), 691-712. https://doi.org/10.12989/scs.2016.22.3.691.
  25. Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT", Adv. Nano Res., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405.
  26. Javani, R., Bidgoli, M.R. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-426. https://doi.org/10.12989/scs.2019.31.4.419.
  27. Jafari Natanzi, A., Soleimani Jafari, G. and Kolahchi, R. (2018), "Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation", Comput. Concrete, 21(5), 569-582. https://doi.org/10.12989/cac.2018.21.5.569.
  28. Karami, B., Shahsavari, D. and Li, L. (2018a), "Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory", Physica E: Low-dimensional Systems and Nanostructures. 97, 317-327. https://doi.org/10.1016/j.physe.2017.11.020.
  29. Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2018b), "Wave dispersion of mounted graphene with initial stress", Thin-Wall. Struct., 122, 102-111, https://doi.org/10.1016/j.tws.2017.10.004.
  30. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2018c), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal secondorder shear deformation theory", Proceed. Instit. Mech. Eng., Part C J. Mech. Eng. Sci., 233, 287-301, https://doi.org/10.1177/0954406218756451.
  31. Keshtegar, B. and Kolahchi, R. (2018), "Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory", Steel Compos. Struct., 28(2), 195-20. https://doi.org/10.12989/scs.2018.28.2.195.
  32. Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N.T. (2020a), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin Wall. Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820.
  33. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A Solids., 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010.
  34. Keshtegar, B., Tabatabaei, J., Kolahchi, R. and Trung, N.T. (2020c), "Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load", Adv. Concr., Constr., 9(3), 327-335. https://doi.org/10.12989/acc.2020.9.3.327.
  35. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. ttps://doi.org/10.1016/j.compstruct.2016.05.023.
  36. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.
  37. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A.H. (2017), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci. 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  38. Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R. and Mahmoudi, M. (2018), "A numerical method for magnetohygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Mathemat. Applicat., 78(6), 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042.
  39. Kolahchi, R., Zhu, S.P., Keshtegar, B. and Trung, N.T. (2020a), "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Technol., 98, 105656, https://doi.org/10.1016/j.ast.2019.105656.
  40. Kolahchi, R., Arbabi, A. and Bidgoli, M.R. (2020b), "Experimental study for ZnO nanofibers effect on the smart and mechanical properties of concrete", Smart Struct. Syst., 25(1), 97-104. https://doi.org/10.12989/sss.2020.25.1.097.
  41. Kolahchi, R. and Kolahdouzan, F. (2021), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060.
  42. Kolahchi, R., Keshtegar, B. and Trung, N.T. (2022), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", Int. J. Sandw. Struct., 24, 643-662. https://doi.org/10.1177/10996362211020388
  43. Kolahdouzan, F., Mosayyebi, M., Ghasemi, F.A., Kolahchi, R. and Mousavi Panah, S.M. (2020), "Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates", Adv. Nano Res., 9(4), 237-250. https://doi.org/10.12989/anr.2020.9.4.237.
  44. Motezaker, M. and Kolahchi, R. (2017a), "Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concr., 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.
  45. Motezaker, M. and Kolahchi, R. (2017a), "Seismic response of concrete columns with nanofiber reinforced polymer layer", Comput. Concr., 20(3), 361-368. https://doi.org/10.12989/cac.2017.20.3.361.
  46. Motezaker, M., Kolahchi, R., Kumar Rajak, D. and Mahmoud, S.R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., https://doi.org/10.1002/pc.26118.
  47. Mosharrafian, F. and Kolahchi, R. (2016), "Nanotechnology, smartness and orthotropic nonhomogeneous elastic medium effects on buckling of piezoelectric pipes", Struct. Eng. Mech., 58(5), 931-947. https://doi.org/10.12989/sem.2016.58.5.931.
  48. Naseri Taheri, M., Sabet, S.A. and Kolahchi, R. (2020), "Experimental investigation of self-healing concrete after crack using nano-capsules including polymeric shell and nanoparticles core", Smart Struct. Syst., 25(3), 337-343. https://doi.org/10.12989/sss.2020.25.3.337.
  49. Taherifar, R., Zareei, S.A., Bidgoli, M.R. and Kolahchi, R. (2020), "Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory", Steel Compos. Struct. 37(1), 99-115. https://doi.org/10.12989/scs.2020.37.1.099.
  50. Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Euro. J. Mech. A Solids, 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.
  51. Taherifar, R., Zareei, S.A., Bidgoli, M.R. and Kolahchi, R. (2021), "Application of differential quadrature and Newmark methods for dynamic response in pad concrete foundation covered by piezoelectric layer", J. Comput. Appl. Math., 382, 113075. https://doi.org/10.1016/j.cam.2020.113075.
  52. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nanoparticles", Wind. Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.
  53. Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concr., 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.
  54. Zarei, M.S., Azizkhani, M.B., Hajmohammad, M.H. and Kolahchi, R. (2017), "Dynamic buckling of polymer-carbon nanotube- fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments", J. Sandw. Struct. Mat., https://doi.org/10.1177/1099636217743288.